皮质锥体神经元的电活动由结构稳定、形态复杂的轴突树突树支持。轴突和树突在长度或口径方面的解剖差异反映了神经信息输入或输出的底层功能特化。为了正确评估锥体神经元的计算能力,我们分析了 NeuroMorpho.Org 数据库中的大量三维数字重建数据集,并量化了小鼠、大鼠或人类大脑皮层不同区域和层次的基本树突或轴突形态测量值。根据获得的形态测量数据对参与神经元电脉冲的离子总数和类型的物理估计,结合活动大脑消耗的葡萄糖所驱动的神经递质释放和信号传导的能量,支持在热力学允许的 Landauer 极限下进行高效的大脑计算,从而实现不可逆的逻辑运算。电压感应 S4 蛋白 Na + 、K + 或 Ca 2+ 离子通道 α 螺旋中的单个质子隧穿事件非常适合用作单个 Landauer 基本逻辑运算,然后通过穿过开放通道孔的选择性离子电流进行放大。这种计算门控的小型化允许在人类大脑皮层中每秒执行超过 1.2 个 zetta 逻辑运算,而不会因释放的热量而燃烧大脑。
与给定主题相关的刺激的网络梯度统计。概念神经元在解释和操纵生成结果方面表现出磁性。关闭它们可以直接产生在不同场景中情境化的相关主题。连接多个概念神经元簇可以生动地在单个图像中生成所有相关概念。我们的方法在多主题定制方面取得了令人印象深刻的性能,甚至四个或更多的主题。对于大规模应用,概念神经元是环境友好的,因为我们只需要存储一个稀疏的 int 索引簇,而不是密集的 float32 参数值,与以前的定制生成方法相比,存储消耗减少了 90%。对不同场景的广泛定性和定量研究表明,我们的算法具有优越性
在社会政策对跨亚组的健康影响的实质性异质性可能很常见,但尚未系统地表征。使用55个当代研究对社会政策的健康影响的样本,我们记录了评估异质治疗效应(HTES)的频率,以评估哪些亚组(例如,男性,女性)和以标准平均差异(SMD)表示的亚组特异性效应估计值。对于每个研究,结果和维度(例如性别),我们拟合随机效应的荟萃分析。我们使用亚组特异性效应eSti Mates(τ)的标准偏差来表征策略效应中异质性的大小。在报告亚组特异性估计的44%的研究中,政策影响通常很小(<0.1 SMD),对健康的影响(有益67%)和差异(50%暗示对不同等的缩小)。在整个研究结果维度中,有54%的人表明效应的任何异质性,而20%的SMD为0.1。在26%的研究结果二维中,τ的幅度表明,相反符号的影响在整个亚组之间是合理的。异质性在策略效应中更为普遍,未指定先验性。我们的发现表明,社会政策通常会对不同人群的健康产生异质作用;这些HTE可能会显着影响差异。对社会政策和健康的研究应常规评估HTE。
openitive工程是通过重新设计认知科学和工程中现有知识的决策支持,人类自动化相互作用的领域[1]。该区域用于从健康到能源的所有危险领域。认知工程;合并了认知科学,数据科学,数据分析方法以及分析和基于软件的方法。例如,在控制工程应用中,管理半自治系统的人类角色的控制器可以视为认知系统的应用。这些半自主系统减少了人的身体工作量,同时减少了人类诱发的失败。几乎所有这些应用程序都是基于计算机的系统。因此,计算机系统和软件技术的经验的发展将使未来的认知技术环境创建[1-4]。
图 8 显示了在传统旋风分离器上增加涡流稳定器盘(模拟改进的旋风分离器技术)对锥体侵蚀的影响,适用于 L/D 为 3.1 的旋风分离器。结果发现,带有涡流稳定器的旋风分离器的锥体侵蚀明显低于不带涡流稳定器的传统旋风分离器的锥体侵蚀。对于不带涡流稳定器的传统旋风分离器,随着气体速度的增加,锥体侵蚀呈线性增加。但是,带有涡流稳定器的旋风分离器的锥体侵蚀随着气体出口速度的增加而略有减少。侵蚀的减少起初是违反直觉的;然而,这可以通过以下事实来解释:当出口管直径减小以增加气体出口速度时,涡流直径较小。这会增加涡流与锥壁之间的距离,从而降低在锥体中旋转的固体所受的离心力(因此也降低了固体速度)。固体所受力的减小可以解释图 8 中带有涡流稳定器的旋风分离器的锥体侵蚀与气体出口速度的下降。
1. 康普顿相机 康普顿相机是一种利用康普顿散射光子的能量与其散射角度相关的事实的设备。它们通常由一个具有非常好的位置分辨率的薄散射探测器和一个单独的分段吸收器组成,用于测量散射光子的能量。知道了康普顿散射光子的能量和散射源的精确位置,就可以从散射点向后向源投射一个锥体。源被限制在锥体表面的某个位置。由于入射光子方向的模糊性,它是一个锥体而不是一条线。乍一看,这听起来没什么用。然而,第二个散射光子将产生另一个锥体,两个锥体之间的交点揭示了源的位置。原则上,如果可以在散射探测器中测量反冲电子的方向,则可以消除背投影中光子方向的模糊性。
本文介绍了威廉姆森纳米流体和普通纳米流体在旋转锥体延伸表面上流动时非稳态动力学热分布增强的数值研究。回旋微生物的生物对流和磁场热辐射通量是这项研究的重要物理方面。沿 x 和 y 方向考虑速度滑移条件。通过相似函数将主要公式转换为常微分形式。通过使用 Matlab 代码对 Runge-Kutta 程序进行数值求解,解决了五个具有非线性项的耦合方程。浮力比和生物对流瑞利数的参数降低了 x 方向的速度。与粘度成正比的滑移参数降低了流速,从而导致温度升高。此外,温度随着磁场强度、辐射热传输、布朗运动和热泳动值的升高而升高。
人类诱导的多能干细胞(HIPSC)已在体外广泛使用,以模拟神经发育中的早期事件。由于存在许多缺点,先前的工作已经建立了移植到小鼠大脑后体内使用这些细胞的潜力。在这里,我们描述了一种系统的方法,用于分析小鼠脑中移植的HIPSC衍生神经元和神经胶质细胞。使用GCAMP6F表达人神经细胞的功能性两光子成像,我们定义并量化其自发活性的类似胚胎样特征。通过移植的详细电子显微镜(EM)来证实这一点。我们将其与神经元在体内长达7个月进行的突触发育有关。现在,可以进一步使用该系统,用于针对精神分裂症或自闭症谱系障碍(例如精神分裂症或自闭症)神经发育疾病的遗传或实验操纵。