人类和机器都使用语音识别系统。各种研究人员已经开发了许多语音识别系统。例如语音识别、说话人验证和说话人识别。语音识别系统的基本阶段是预处理、特征提取、特征选择和分类。已经进行了大量工作来改进所有这些阶段以获得准确和更好的结果。本文主要关注在语音识别系统中添加机器学习。本文介绍了 ASR 的架构,有助于了解语音识别系统的基本阶段。然后重点介绍了机器学习在 ASR 中的应用。本文的一部分还介绍了各种研究人员使用支持向量机和人工神经网络所做的工作。除了这篇评论外,还介绍了使用 SVM、ELM、ANN、朴素贝叶斯和 kNN 分类器所做的工作。模拟结果表明,使用 ELM 分类器可实现最佳准确度。本文的最后一部分介绍了使用所提出的方法获得的结果,其中使用了 SVM、带有 Cuckoo 搜索算法的 ANN 和带有反向传播分类器的 ANN。重点还在于改进预处理和特征提取过程。
摘要 — 我们提出了一种新的混合系统,使用多目标遗传算法在灰度图像上自动生成和训练量子启发分类器。我们定义了一个动态适应度函数,以获得最小的电路和对看不见的数据的最高准确度,确保所提出的技术具有通用性和鲁棒性。我们通过惩罚它们的出现来最小化生成的电路在纠缠门数量方面的复杂性。我们使用两种降维方法来减小图像的大小:主成分分析 (PCA),它在个体中编码以进行优化,以及一个小型卷积自动编码器 (CAE)。将这两种方法相互比较并与经典的非线性方法进行比较,以了解它们的行为并确保分类能力归因于量子电路而不是用于降维的预处理技术。
替代树脂系统的树脂系统,2023年6月,由Sphera Solutions,Inc。为Exxonmobil技术和工程公司编写。这项研究已根据独立的第三方关键审查小组确认根据ISO 14067:2018(温室气体 - 产品的碳足迹 - 要求和定量指南)进行确认。**在这项生命周期评估(LCA)研究中评估的所有树脂均涉及成型应用中使用的类型。具体来说,环氧树脂系统是VARTM风叶片生产中使用的类型。树脂系统代表配制的树脂系统,包括任何必需的固化硬化剂或催化剂。敏感性范围是聚氨酯,乙烯基酯和环氧系统的基于文献综述和Sphera Solutions,Inc。的数据。
图3:li稳定性和Allzofim的短路电阻。(a)Allzo电解膜的电流响应在Li +从LI计数器电极到PT工作电极的电化学运输后,并反向相反。数字表示进行阻抗光谱测量的点。(b)在多个拼布和剥离的步骤后,AllzoFim部件与LI金属接触的阻抗响应的Nyquist图。插图显示了从阻抗光谱中提取的电解质电阻的演变。(c)对称LI/LI/LI细胞配置中Allzo电解质膜的电静脉反应。正向和反向电流密度范围为0。2 mA cm - 2最多3。2 mA cm -2以0的步骤施加。1 mA H CM - 2。
Wireless Stick .................................................................................................................................................. 1
摘要:对于具有肌萎缩性侧面硬化症(ALS)的受试者,言语和非言语通知受到很大的损害。基于视觉诱发电位(SSVEP)的大脑计算机界面(BCIS)是成功的替代增强通信之一,可帮助ALS与他人或设备进行通信。对于实际应用,噪音的影响大大降低了基于SSVEP的BCI的性能。因此,开发基于SSVEP的强大BCI对于帮助受试者与他人或设备进行交流非常重要。在这项研究中,提出了基于噪声抑制的特征提取和深度神经网络,以开发出强大的基于SSVEP的BCI。为了抑制噪音的影响,提出了一种denoising自动编码器来提取降解功能。为了获得实用应用的可接受识别结果,深层神经网络用于发现基于SSVEP的BCI的决策结果。实验结果表明,所提出的方法可以有效地抑制噪声的影响,并且基于SSVEP的BCI的性能可以大大改善。此外,深神经网络的表现优于其他方法。因此,提出的基于SSVEP的BCI对实际应用非常有用。
创建一条关于我即将在卡内基梅隆大学(CMU,匹兹堡)发表的演讲的热门推文,标题为“大型语言模型的水印”。主题包括水印、检测人工智能生成的文本、保护模型的版权。尽量让它风趣幽默。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年12月3日发布。 https://doi.org/10.1101/2024.12.02.626472 doi:Biorxiv Preprint