• 在本实施例中,使用以 CO 2 为工作流体的文丘里泵将金属氧化物粉末(如铁锈、Fe 3 O 4 )吸入系统。 • 泵将铁锈粉末和 CO 2 推进系统的反应器,在那里铁锈中的铁与化合物中的氧分离。 • 铁以正离子的形式离开反应器;这些离子随后被电磁场加速,并通过永磁场从气流中转移。 • 然后铁离子被带负电的法拉第杯接收,在那里离子被中和并以纯铁金属的形式储存。 • 然后这种金属可以用作建筑或工业材料。 • 值得注意的是,该过程适用于任何离子键合的金属氧化物化合物,包括稀土元素。
摘要 钛合金Ti6Al4V具有强度高、耐腐蚀性能好等优点,被广泛应用于医疗、汽车、航空航天等行业。另一方面,增材制造(AM)技术可以给予产品设计的自由度。为了推广AMed产品,需要将AMed与锻造产品连接起来,了解接头特性非常重要。本研究在氩气保护下用光纤激光器对Ti6Al4V板进行对接焊,并实验研究了激光焊接锻造/锻造、AMed/AMed、AMed/锻造Ti6Al4V板的接头特性。AMed板的抗拉强度高于锻造板,但AMed板的伸长率较小,这是因为AM工艺中AMed板在激光辐照过程中由于快速冷却而产生α'马氏体。然后,AMed/AMed板的激光焊接接头具有较高的抗拉强度,但伸长率小于锻造/锻造板。强化/锻造钢板的焊接接头表现出良好的焊接状态,因为较小的热输入导致锻造钢板和强化钢板之间形成较小且硬度较高的焊道。
该项目由美国政府机构能源部通过小企业创新研究/小企业技术转让计划办公室第 0 阶段外联和援助合同资助。美国政府及其任何机构、其任何雇员、承包商或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性作任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定表明或反映美国政府或其任何机构的观点和意见。
Anchor Harvey 原名为 Harvey Metal Corporation,由 Harold B. Harvey 于 1923 年在伊利诺斯州芝加哥创立。第一次世界大战结束后的几年里,国防工业对开发黄铜和铝锻件的新型商业技术越来越感兴趣。Harvey Metal Corporation 迅速采取行动,重新构想军械(枪支或火炮)的锻造工艺,开发出一种新型热压锻造,消除了当时其他工艺生产的部件中的孔隙度和固有缺陷。在 20 世纪 30 年代和 40 年代,该公司迅速因其创新工艺而闻名,并开始生产当时蓬勃发展的汽车行业中使用的第一批锻造部件。他们因在航空市场铝锻件的开拓性开发中所做的工作而获得了进一步的赞誉。 Chicago Extruded Metals 于 1950 年收购了 Harvey Metal Corporation。新东家后来将 Harvey Metal 与其位于伊利诺伊州艾迪森的 Anchor Screw Products 部门合并,当时公司正式更名为 Anchor Harvey。1978 年,Anchor Harvey 迁至伊利诺伊州弗里波特,公司目前就在那里运营。多年来,公司不断扩张,目前为国内外众多行业提供服务。Lefaivre 表示:“自成立之初,我们就为国防、航空和汽车行业提供顶级锻件,并且不断发展壮大。目前,我们还为医疗、赛车运动、射箭、安全和建筑行业提供锻造铝部件,此外还有丰富的
锻造线 机械液压机器人压力机、反击锤、环辊。 热处理 计算机化和机器人化生产线。 加工线 柔性生产线;全自动和手动加工线。 提供高精度加工服务。 焊接/制造车间 最先进的机器人焊接设备。 测试设施 我们在自己的实验室中进行所有类型的 DT,所有测试均在我们最先进的内部设施中进行,这些设施包括最新技术和最有经验的 QC 人员。 全自动机器人仓库 库存容量超过 8,000 吨。
抽象图像伪造检测是数字取证的关键领域,试图发现图像中的受操纵区域以确保其真实性和完整性。本研究研究了机器学习技术的使用,尤其是用于图像欺诈检测的卷积神经网络。建议的方法涉及训练分类器,以使用提取的功能或补丁区分原始图像和假冒图像。图像数据集分为本研究中的训练和测试集,以促进与原始图像相对应的贴片上的CNN培训。然后使用其他测试集评估了受过训练的模型识别假冒区域的准确性。为了衡量基于CNN的伪造检测系统的有效性,使用了评估标准,例如准确性,精度和召回率。使用调谐参数的VGG16网络实现了99.15%的精度。
假设线性弹性断裂力学,无论机体几何形状如何,具有相同应力强度因子的两个裂纹将以相同的速率扩展。然而,在 GKN Aerospace,对铸件制成的 C(T) 和 Kb 试样进行疲劳裂纹扩展试验的结果显示,疲劳裂纹扩展速率存在明显差异,其中 Kb 试样中的裂纹扩展速度快于 C(T) 试样中的裂纹。已经研究并量化了这些观察到的差异。对于疲劳裂纹扩展试验,在 R = 0 的脉动拉伸下加载的开裂 Kb 试样的裂纹扩展速度比 C(T) 试样中的裂纹快 3.6 倍,这是在所有试验温度下和材料 Ti-64、Ti-6242 和 IN-718 的平均值。已经使用锻造的 Ti-64 和 IN-718 制成的 C(T) 试样进行了新的疲劳裂纹扩展试验,并将其与锻件制成的 Kb 试样的疲劳裂纹扩展速度进行了比较。发现锻件制成的 Kb 和 C(T) 试样的疲劳裂纹扩展速率差异非常小。
假设线性弹性断裂力学,无论物体的几何形状如何,具有相同应力强度因子的两个裂纹将以相同的速率扩展。然而,在 GKN Aerospace,对铸件制成的 C(T) 和 Kb 试样进行疲劳裂纹扩展测试的结果显示,疲劳裂纹扩展速率存在明显差异,其中 Kb 试样中的裂纹比 C(T) 试样中的裂纹扩展得更快。这些观察到的差异已经过研究和量化。对于疲劳裂纹扩展测试,在 R = 0 的脉动拉伸下加载的破裂 Kb 试样的裂纹扩展速度是 C(T) 试样中裂纹的 3.6 倍,在所有测试温度和材料 Ti-64、Ti-6242 和 IN-718 上取平均值。使用锻造的 Ti-64 和 IN-718 制成的 C(T) 样品进行了新的疲劳裂纹扩展测试,并与锻件制成的 Kb 样品的疲劳裂纹扩展率进行了比较。发现锻件制成的 Kb 和 C(T) 样品之间的疲劳裂纹扩展率差异非常小。
除了传统的热锻以外,更现代的成形技术也变得越来越重要,如今它们已成为非常经济的制造工艺,特别是由于近净成形或精密温成形节省了成本。精密锻件主要用于飞机、发电设备、管材部件和汽车的关键部件,这些部件对表面质量和安全性有很高的要求。钛和钛合金如今广泛应用于航空航天和医疗领域。由于钛具有较高的比强度,因此使用钛可以显著减轻重量。另一个优点是热稳定性高和耐腐蚀性好。