3测试样品此测试方法主要设计用于测量“镀” eNig pwbs中的磷含量。也可以使用此方法对其他镀镍(EN)镀板材料进行测试,包括柔性电路,硅晶片,铝或钢。PWB底物上NIP层的典型厚度范围为3至6 µm [118.1至236.2 µin]。磷含量的重量可以从0%到14%。精确确定P含量所需的单层电镍的最小和最大厚度为0.5 µm至25 µm [19.7 µin至984 µin]。测试后,标本表面上存在的金的最大厚度应小于0.10 µm [0.004 µin]。对于具有较厚黄金的样品,必须在评估之前通过化学剥离或离子铣削去除黄金。
•陶瓷上的高纯度粘合铜灯泡可提供高热电导率,当前容量和散热。•可选的凹痕特征通过减少热应力来显着提高热循环可靠性。•多功能铜的实用选择可确保出色的焊具有出色的焊接性,但仍能从180-800°C进行多次焊接和铜管操作,而不会降解。•NI-AU,PD和AG PLATINGINEDES可实现广泛的经济组装技术,包括SMT焊接,烧结的低温和高温模具附件,Al和Au电线以及丝带粘合。•通过(PTV®)技术通过(PTV®)技术传输DBC两侧的互连和AMB底物与PTV®CU插入或通过孔插入或镀板,以获得更高的电流承载能力。•SI3N4上的DBC和AMB可用于其他制造商无法娱乐的较低订单。
干膜光构师是一种流行的方法,用于产生高频电路板,因为其出色的分辨率,均匀性和粘附性能。该过程涉及将底物涂上一层干膜光蛋白天,将其暴露于紫外线,并通过删除膜的未暴露区域来开发图像。这将产生精确的电路模式,可以蚀刻或镀板以创建所需的电路特征。使用干膜的光构脏特别天特别适合高频电路板,因为它可以提供必要的分辨率和准确性,以确保电路的信号完整性。此外,可以轻松地剥离和开发干膜的光蛋白天,从而最大程度地减少对基板的损害的风险,并确保高过程产量。总体而言,使用干膜光蛋白天是生产高质量,可靠的高频电路板的有效方法。
3。材料和表面工程研究所,横滨,横滨236-8501,日本摘要:锂金属电池可提供高理论能量密度和存储能力,但由于形成锂树突状的锂而遭受了性能退化和安全问题的困扰。这项研究设计了基于3D多孔电流收集器的电阻率梯度结构,以抑制树突的生长。通过紫外线(紫外线)灭活过程,抑制了上层的催化剂形成,从而限制了上层铜板,并在电镀层阶段朝向下部增强板。随后,进行电镀以增加铜的厚度。实验结果表明,这种梯度抗性电流收集器最大程度地减少了表面锂沉积,从而阻塞了孔。电荷分离稳定性评估表明,使用该梯度结构的电池在全细胞和对称细胞测试中表现出更高的稳定性和改善的性能。这项研究在商业化锂金属电池方面提出了重大的技术进步。关键词:3D多孔电流收集器,电阻率梯度,锂金属电池,电镀板,紫外线催化剂灭活。1。简介
ph: +82-041-925-1389电子邮件:yuseon.heo@samsung.com摘要移动设备有限的热预算几乎不允许全速使用高性能应用程序(AP)。但是,由于人工智能技术已迅速应用于移动设备,因此高速和大容量信号处理等需求正在不断增加。因此,控制AP芯片的热量生成成为关键因素,并且有必要开发基于重分配层(RDL)的风扇外套件(FOPKG)结构,该结构不会增加包装的厚度,同时最大程度地提高耗散量的厚度。CU柱的高度在产生可能施加厚的Fopkg的高度正在越来越高,并且在这项研究中,开发了世界上最厚的光孔材料(> 350UM厚度),以生产Cu Post(> 300UM厚度)。研究了光震鼠的光透射率的影响以及根据主聚合物的分子结构的溶解度的影响,以进行厚光构师的光刻过程。基于对这种厚的光质危行为的理解,开发了最佳的液体类型的光蛋白天抗事组成。通过光刻评估基于厚的光片特性,通过实施和CU电镀板进行深孔,以在AP产品设计施加的晶片中获得CPK 1.27的产率。关键字风扇外包装,厚度厚度光抗光毒师,Cu Post取决于对厚光构师的深入理解和实验,可以建立高级研究基础,以增加光孔厚度和更精细的CU后俯仰,以确保散热特征并提高建筑的自由度。
铅免费焊接和环境合规性:供应链准备和挑战Dongkai Shangguan flextronics摘要供应链准备和兼容性对于平稳过渡到全球电子行业的环境合规性至关重要。本文回顾了无铅销售和ROHS合规性,供应链准备,关键兼容性问题和未来挑战的状态。领先的免费解决方案带有免费的免费焊料合金,现在已经花费了将近15年的时间来开发免费的铅焊料解决方案。自然,努力始于寻找无铅焊料合金。该行业终于融合了SN-AG-CU(SAC)合金;但是,尚不清楚这是否是对单个合金组成的强大收敛,还是具有各种组成和修饰的弱收敛性。如果可以依靠历史在这方面提供任何指导,那么在西方世界中,在远东地区有更多品种的统一性。由于其关键特征的绝对相似性,因此预计SAC周围的这些变化和修改不会需要显着不同的焊接过程和基础设施。知识基础设施该行业在建立知识基础设施方面取得了重大进展,以支持潜在的免费解决方案,包括焊料材料需求,组件要求,PCB(印刷电路板)层压材料和表面表面处理要求,包括SMT(表面上的技术),波浪焊接和重新制作的型板形式和复杂性。in铅免费焊接过程的资格已成为渗透无铅知识和全球工厂能力的有效工具。组件的组件内部材料必须满足ROHS要求。就终止冶金剂而言,对于被动组件,Matte SN Plating已与SN-PB焊料一起使用了很多年,并且也可以与无铅焊料一起使用。对于铅组件,只要可以有效地管理SN Whisker风险,就可以与无铅焊料(“向前兼容”)一起使用Matte SN或SN合金的电镀。ni/pd已与SN-PB焊料一起使用了多年,而Ni/PD/AU目前是铅型组件的替代品,用于铅免费焊接。带有SAC球的区域阵列套件与SAC焊料效果很好。用于回流焊接,假设最低峰值温度为235 o C,最高温度取决于整个电池的温度三角洲,这又取决于板的尺寸,厚度,层计数,布局计数,CU分布,组件尺寸和热质量,烤箱的热质量,烤箱的热容量,以及某些不可循环的过程变异和测量耐受性。大型厚板,带有大型复杂组件(例如CBGA,CCGA等)通常具有高达20-25 o的温度三角洲。返工是另一个有助于组件温度升高的过程。考虑到所有应用要求时,长期以来一直提出了260 o C峰值温度作为铅无铅焊接所需的温度。根据组件的体积和厚度以及过程条件(例如返工),在IPC/JEDEC标准020中捕获了要求(包括焊接峰值温度和公差)。应注意,实际的组件体温可能与板上测得的温度不同,并且不同的组件可能具有不同的温度,具体取决于板上的组件热特性和位置。PCB较高的无铅焊接温度列出了PCB的可靠性问题,例如变色,经线,分层,起泡,垫子提升,CAF,CAF(导电阳极丝),CU桶和箔纸的破裂以及互连分离等焊接过程后,其中一些问题很明显,而其他问题可能会导致潜在的失败。pth(通过孔进行镀板)可靠性可能会受到无铅焊接的不利影响,具体取决于PCB的厚度,层压材料,焊接轮廓和CU分布,通过几何形状和Cu Plating厚度等。