图1。ndnio 2中的电荷顺序[24]:(a)从钙钛矿Ndnio 3(灰色)到Infinite-Layer ndnio 2(红色)的还原途径的示意图,具有各种中间状态(蓝色); (b) - (d)样品J的茎结果,可以在面板(d)中区分根尖氧空位,从而导致Q//≈(1/3,0)在傅立叶变换图像(b)中的超晶格峰; (e)在Q //≈(1/3,0)围绕Ni L 3边缘处的弹性RXS测量,实体和虚线分别是具有σ和π偏振入射X射线的数据; (f)在ND M 5边的RXS测量; (g),(h)带有样品C和D的固定波形的RXS信号的能量依赖性,阴影区域表示标称电荷顺序贡献。黑色和红色箭头突出显示了Ni 3D-RE 5D杂交峰和Ni L 3主共振,样品C的中间状态比样品D较大,从而导致超晶格峰更强。
事故飞机的左主起落架 (LMLG) 外筒自上次大修以来已运行了大约 8 年半,空气加注阀孔中可能存在杂散镀镍。镀镍是维持外起落架筒内径公差的允许程序,但不允许在空气加注阀孔中使用镀层。文献和测试研究表明,镀镍厚度为 0.008 英寸会导致应力系数增加 35%。在 LMLG 使用寿命的某个时刻,会发生一次负载事件,导致空气填充阀孔附近的材料压缩屈服,从而产生残余拉伸应力。在正常运行期间,空气填充阀孔中的应力水平可能在设计范围内,但由于镍引起的残余应力和应力强度因子的增加,这些应力水平增加到足以在空气填充阀孔的每一侧引发和发展疲劳裂纹的水平。通过开发有限元模型 (FEM) 检查空气填充阀孔处的应力,该模型通过从装有仪表的在役 Fedex MD-10 飞机收集的数据进行验证。在役数据和 FEM 表明,在所有条件下,空气填充阀孔中的应力都远高于外筒设计中的预期。对在役结果进行疲劳分析并使用镀镍系数得出
非常适合涡轮市场,包括固定翼和旋翼的应用,TB44快速启动飞机的发动机,并具有优质的能量密度-Nanophophate®Lithium-ion Cells可提供每公斤能量的3倍,导致电池比铅酸或镍 - 镀镍 - 替代品轻40%。
不仅锌矿石,铝土矿和煤粉,而且其他一些矿石还含有痕量的镀凝剂,例如铁矿石,铜矿,铅矿石,矿石,木薯,钨和钼矿石。通常,这些矿物质中的甘露含量太低,无法单独利用,但可以作为其他金属提取过程中的副产品回收,这是目前的潜在凝胶来源,占全球金属生产的不到10%。在铝制粘土岩和煤层中的Boehmite共存。6尼蒙省奥斯托斯的低硫氧化煤炭,其中包含异常数量的凝胶和稀土元素。第7节中GA的平均量为44.8μg/g。上石炭纪苯克号的粘土层和铝土矿层,是由中奥多维奇人顶部的风化剥离表面产生的锂省,也是重要的凝胶来源。此外,在克莱伊砾岩中发现了明显的火山晶体和火山灰,这可能部分成为凝胶的来源[28]。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
3测试样品此测试方法主要设计用于测量“镀” eNig pwbs中的磷含量。也可以使用此方法对其他镀镍(EN)镀板材料进行测试,包括柔性电路,硅晶片,铝或钢。PWB底物上NIP层的典型厚度范围为3至6 µm [118.1至236.2 µin]。磷含量的重量可以从0%到14%。精确确定P含量所需的单层电镍的最小和最大厚度为0.5 µm至25 µm [19.7 µin至984 µin]。测试后,标本表面上存在的金的最大厚度应小于0.10 µm [0.004 µin]。对于具有较厚黄金的样品,必须在评估之前通过化学剥离或离子铣削去除黄金。
汽车设备集成电路封装中模塑料和引线框架之间的粘合性差会导致严重的可靠性问题并降低封装质量。本研究旨在评估和了解预镀引线框架 (PPF) 的表面纹理化程序 (粗糙化) 与集成电路封装中的分层现象之间的相关性。引线框架供应商准备了具有纹理表面的预镀引线框架。进行了四项主要评估,基于形态分析、接触角测量、模具剪切强度测试和可靠性测试。对于形态分析,与标准引线框架 (174nm) 相比,纹理 PPF 具有更高的表面粗糙度 (284nm)。在室温下 (71°) 观察到纹理 PPF 的最高接触角值。相反,在根据在线制造条件模拟的 175°C (55°) 下观察到纹理 PPF 的最低接触角值。与标准引线框架相比,纹理 PPF 获得了更高的剪切强度测试。此外,可靠性测试证明 PPF 样品未检测到分层。然而,在标准引线框架中也观察到了这种现象。所有观察结果都表明,通过对引线框架进行表面纹理化处理,模具化合物和引线框架之间的界面粘附性得到了显著改善。粘附性的改善有助于消除分层并提高封装可靠性。