一次性 / 充电电池工作时间* 碱性电池:约 7 小时 镍氢充电电池 (2,700 mAh):约 12 小时 应急操作碱性电池:约 3 小时 镍氢充电电池 (10,000 mAh):约 12 小时 * 环境温度约为 20 °C,LR6/LR20:Varta Industrial,HR6/HR20:镍氢充电电池。
开路电压 (OCV):当电流为零且内部电池状态处于平衡状态时,电池的 OCV 存在。对于基于 LiMO2 阴极的电池化学成分,OCV 可以与电池充电状态 SOC(100 x 可用容量/总容量)相关联。阴极化学成分是影响曲线形状、电压范围和温度依赖性的主要因素。磷酸铁阴极材料与 SOC 相比具有“平坦”的 OCV 曲线,类似于镍镉和镍氢电池类型。LiMO2 阴极电池的标称电压通常为 3.6-3.7V。该电压对应于 50% 的 SOC。标称电压乘以电池容量通常是电池能量的良好估计。这些电池的 OCV 通常在 3V(0% SOC)至 4.2V(100% SOC)之间。氧化钴基电池的最大电压可能高达 4.35V。
与 LIBs、镍氢和锂离子电池相关的其他材料(如钴、钒、锂、石墨、镧、铈、镨和钕)属于欧盟列出的关键原材料 (CRM) 类别(欧盟委员会,2020 年)。它们不含铅或镉等对环境有害的重金属。然而,LIBs 含有几种对环境有危害的成分,不符合可持续性和绿色化学原则的标准。在这方面,人们不断寻找具有高容量和能量密度的新型活性电极材料。石墨 (Gr) 因其高库仑效率和良好的循环稳定性而被广泛用作商业 LIBs 中的负极材料。 5 然而,由于 Gr 的理论容量低至 372 mA hg − 1 且倍率性能较差,因此无法满足提供高能量(存储)容量和高功率密度的高性能 LIB 的迫切需求。6,7 此外,Gr 也是欧盟 (EU) 列为 CRM 的主要原材料。7
• AC/DC 便利性非常适合在家中或赛道上使用! • 峰值充电 1-8 节镍镉或镍氢电池组。 • 峰值充电电流可调范围为 0.1 至 5.0 安培(交流输入时最大 3.0A)。 • 如果未预设特定充电设置,自动充电模式功能会自动为电池充电。 • 峰值检测灵敏度或“阈值”可调范围为 3mV – 20mV,可根据特定电池自定义匹配充电器。 • 可调涓流充电率 0、100mA、200mA。 • 双行、8 字符 LCD,方便编程和数据显示。 • 显示电池电压、峰值检测 mV、充电时间、电流和容量。 • 显示输入电压不当、电池连接不良和输出反极性错误。 • 在内存中存储多个电池的预设充电参数。 • 多种声音提示和旋律。 • 微处理器控制智能和可靠性。 • 输入和输出上的固态反极性和短路保护。
节省空间的泵设计 紧凑型双作用泵在高流量下提供出色的效率和可靠性 宽工作流量范围 5 毫升/分钟至 5 升/分钟 符合人体工程学的外壳,握持和佩戴舒适,设计具有承受长期日常使用的强度 直接体积流量控制和实时流量指示 数字流量控制电路在校准之间提供长期稳定性 多语言固件:英语、西班牙语、意大利语、法语、德语、丹麦语 泵管理器应用软件,简化采样数据和结果的日常管理 专业型号可存储多达 100 个事件的样本数据 红外无线数据下载,只需指向并观看 大型 LCD 显示屏清晰显示所有操作信息和模式 嵌入式智能快速充电器,充电安排整洁方便 绿色技术镍氢电池组 应急干电池组选项 用于抓取气体采样的气袋出口,增加了泵的多功能性
以锂离子电池(LIB)形式的储能储存已在消费者,住宅,商业,工业和运输部门的广泛应用中越来越多地使用和接受。现在用于越来越大的应用,包括电动踏板车,电动自行车,电动汽车和电池储能系统(BESS),用于住宅,社区,社区,商业,商业和网格尺度的应用程序,包括电子烟和VAPES,手机,平板电脑,笔记本电脑和电动工具等便携式电子设备的技术。通常在120-180 WH/kg范围内,铅酸的30-180 kg范围,镍镉(Ni-CD)的50 WH/kg,镍钙(NI-CD)和60-70 WH/kg,镍氢化合物(NIMH)(NIMH)(NIMH)(NIMH)以及过去的两次均可使用的EVEDS的成本均可提高两次decade and decade and for for for vise and decadess in ni decadess in Decadess in Decadess的成本。 libs是指阴极的一系列电池家族,其中阴极由锂的各种氧化物组成。 一些常见的例子包括氧化锂(LiCoo 2或LCO),镍镍锰钴(Linimncoo 2,NMC或NCM),锂镍钴氧化铝(Linicoalo 2或NCA),含含氧液含量(linium Manganese氧化物(Limn)2 O 4或Lith Inlium Irinium Irinium Irrium Irinium Irinium Irrpe(Limn 2 O 4或Limn phlocke)锂离子聚合物(LIPO)。通常在120-180 WH/kg范围内,铅酸的30-180 kg范围,镍镉(Ni-CD)的50 WH/kg,镍钙(NI-CD)和60-70 WH/kg,镍氢化合物(NIMH)(NIMH)(NIMH)(NIMH)以及过去的两次均可使用的EVEDS的成本均可提高两次decade and decade and for for for vise and decadess in ni decadess in Decadess in Decadess的成本。libs是指阴极的一系列电池家族,其中阴极由锂的各种氧化物组成。一些常见的例子包括氧化锂(LiCoo 2或LCO),镍镍锰钴(Linimncoo 2,NMC或NCM),锂镍钴氧化铝(Linicoalo 2或NCA),含含氧液含量(linium Manganese氧化物(Limn)2 O 4或Lith Inlium Irinium Irinium Irrium Irinium Irinium Irrpe(Limn 2 O 4或Limn phlocke)锂离子聚合物(LIPO)。
摘要。在追求可持续交通解决方案的过程中,电动汽车 (EV) 已成为一种有前途的替代方案。本研究论文深入探讨了电池管理系统 (BMS) 所发挥的关键作用,并对电动汽车的各种储能技术进行了全面的比较分析。本文首先通过说明性框图阐明了 BMS 的复杂组件和功能,强调了其在确保电池安全和最佳运行方面的重要性。然后,该研究对关键电池属性进行了细致的分析,包括能量密度、功率密度、容量、充电/放电率、生命周期和每千瓦时成本。在模拟数据的支持下,比较分析揭示了不同类型电池(锂离子 (Li-Ion)、磷酸铁锂 (LiFePO4)、镍氢 (NiMH) 和超级电容器)的独特性能特征。结果提供了对其优势和权衡的全面视角,为选择合适的储能解决方案提供了宝贵的见解。通过将复杂的技术信息转化为有意义的见解,这项研究使电动汽车行业利益相关者能够做出明智的决策,从而提高电动汽车的性能、经济可行性和可持续的电动汽车移动性。
摘要:可再生能源是未来几年的希望,因为它们在自然界中储量丰富,而且免费提供。此外,这些能源无污染,是化石燃料的完美替代品。混合动力系统 (HPS) 是一种具有多个发电源的系统,如光伏 (PV) 系统、风力涡轮机、燃料电池等,它们相互连接以提供电力,以满足有/无储能备份的不同需求。本文集中于可再生能源系统的控制和集成自动化,即光伏系统、固体氧化物燃料电池 (SOFC) 与镍氢 (Ni-MH) 电池以及可变负载。建议的 HPS 主要侧重于使用 100% 清洁的光伏,发电时不会产生有毒排放。在这里,太阳能光伏系统通过算法提取最大功率,作为 HPS 中的主要供应贡献者,以满足可变负载需求。如果光伏系统电力供应不足,则利用镍氢电池/固体氧化物燃料电池的电力来满足不断变化的负载需求。另一方面,如果光伏系统电力供应过剩,则多余的能量将储存在镍氢电池中。为了实现有效的供需平衡,HPS 利用各种控制策略,即比例积分 (PI) 和自适应神经模糊推理系统 (ANFIS)。关键词:自适应神经模糊推理系统 (ANFIS);最大功率点跟踪系统 (MPPT);镍氢电池 (Ni-MH);光伏 (PV);固体氧化物燃料电池 (SOFC) 1 引言