摘要。先前关于大脑活动和动作之间互连的研究导致发现了镜像神经元,神经元具有两个特别重要的作用:它们基于视觉信息介导了模仿运动的模仿,并且是对动作的理解的基础。镜像疗法是一种基于视觉反馈在恢复中的使用,是一种相对较新的非侵入性治疗。自1996年以来,它一直在医疗康复计划中引入,以诸如:中风后的偏瘫,中风后的偏瘫,步态恢复,帕金森患者的指尖改善,减轻幻影肢体疼痛的减轻,截肢后的幻影症和手动疼痛的慢性疼痛,骨关节炎,纤维肌痛和复杂的区域疼痛。本工作主题的设备展示了镜像盒的新建设性变体,该变体在上肢和下肢的水平上提供了一种更有效的方法来应用镜像疗法。对视觉刺激在恢复中的有效性进行了两次评估的结果,在该设备的帮助下进行,首先是关于缺血性中风后瘫痪的受试者的手动功能的恢复,并在治疗手动骨关节炎的受试者慢性疼痛方面进行了第二次评估。关键字:镜像疗法,视觉反馈,神经塑性,动力学记忆,中风,幻影肢体疼痛rezumat。dezvoltarea unui dispozitiv pentru terapiaoglindă。terapia prin oglindire este o terapie相对nouă,先前关于大脑与动作之间互连的研究导致发现了镜像神经元,神经元具有两个非常重要的角色:它们基于视觉信息介导模仿运动,并且是理解动作的基础。
引用:VerónicaBenavidezMagister。“”学习镜:镜像神经元如何塑造我们的学习能力”。ACTA科学神经病学7.4(2024):25-38。
患者和方法:在2017年11月至2018年5月之间,手中包括26例外周神经损伤的患者。将患者随机分配到镜像组(n = 14)和对照组(n = 12)组。两组在我们的诊所接受常规疗法,在工作日连续六个星期,每天45分钟。镜子组又接受了10-15分钟的视觉镜疗法。视觉模拟量表(VAS),Duruöz手指数,手臂,肩膀和手的快速残疾,Jebsen手部功能测试和Semmes-Weinstein单丝测试用于评估基线时和治疗后患者的疼痛,手部功能和感觉。用测功机测量患者的手束强度。
抽象的视觉同时定位和映射(VSLAM)为室内和室外导航发现了应用程序,这些应用程序通常会使其经常受到视觉复杂性的影响,尤其是镜像的反射。镜像存在的影响(时间可见及其在框架中的平均大小)的影响会影响定位和映射性能,而系统使用的直接技术预计会表现较差。因此,收集了记录在镜像环境中的图像序列的数据集Mirrenv,并用于评估现有代表性方法的性能。RGBD ORB-SLAM3和BUNDLEDEFUSION似乎随着镜像持续时间的增加显示了绝对轨迹误差的中等降解,而其余结果并未显示出显着降低的定位性能。事实证明,生成的网格图非常不准确,重建中的真实和虚拟反射碰撞。讨论了镜子环境中可能的错误和鲁棒性来源,概述了未来的方向,以验证和改善在平面镜的存在下VSLAM性能。Mirrenv数据集可从https://doi.org/10.17035/d.2023.0292477898获得。
摘要目的:与积极的基于运动的干预措施(即,交叉训练和常规运动)相比,审查和合成有关镜像治疗(MT)有效性的现有证据,以减少中风幸存者中的痉挛和感觉障碍。类型:系统评价和遗传分析。文献调查:搜索了PubMed/Medline,Cochrane,Embase,Cinahl和Physiophipation证据数据库(PEDRO)。方法论:与对照组相比,研究了MT效率的随机对照试验(RCT),以改善中风幸存者的痉挛和感觉障碍。合成:包括15个RCT(653名志愿者)。用MT实现的痉挛改善与交叉训练获得的痉挛相似(standard平均差异[SMD]:0.12,95%置信区间[CI]:0.43至0.68)。此外,当两组中进一步结合常规运动时,痉挛的改善(SMD:0.10,95%CI:0.16,0.36)。最后,当将MT Plus运动与单独运动进行比较时,两组的痉挛降低(SMD:0.16,95%CI:0.16至0.48)。然而,这些干预措施似乎都没有有效的感觉障碍(SMD:0.27,95%CI:0.28至0.81)。结论:MT与其他运动疗法一样有效,例如交叉训练和常规运动,以改善中风幸存者的痉挛,而探索的干预措施均未对感觉障碍产生有益的影响。需要进一步设计的RCT来确认结果。
反映神经元被认为是与他人建立联系的能力,而不是有意识的水平,通过模仿,理解和提供帮助来学习;共情。这些连接不是直接的,而是根据一个人的经验进行介导的[1]。镜像神经元在儿童时期很重要,它们对于学习和获取新技能非常重要。他们参与思考,计划,控制和记忆。如果孩子观察到动作,镜像神经元将激活并形成新的神经联系,就好像他或她亲自进行了动作一样。镜像神经元的有效功能可在任何领域,更大的情绪智力和更高的同理心[1]带来出色的发展。
背景和目标:本文首次设计并介绍了一种基于电流镜和折叠级联拓扑组合的新型折叠镜 (FM) 跨阻放大器 (TIA) 结构。跨阻放大器级是接收器系统中最关键的构建块。这种新型拓扑基于电流镜拓扑和折叠级联拓扑的组合,采用有源元件设计。其理念是在输入节点使用电流镜拓扑。在所提出的电路中,与许多其他已报道的设计不同,信号电流(而不是电压)被放大直到到达输出节点。由于使用二极管连接的晶体管作为电流镜拓扑的一部分,所提出的 TIA 具有低输入电阻的优势,这有助于隔离主要输入电容。因此,以相当低的功耗实现了 5Gbps 的数据速率。此外,设计的电路仅使用了六个有源元件,占用的芯片面积很小,同时提供 40.6dBΩ 的跨阻抗增益、3.55GHz 频率带宽和 664nArms 输入参考噪声,并且仅消耗 315µW 功率和 1V 电源。结果证明了所提出的电路结构作为低功耗 TIA 级的正确性能。方法:所提出的拓扑基于电流镜拓扑和折叠级联拓扑的组合。使用 Hspice 软件中的 90nm CMOS 技术参数模拟了所提出的折叠镜 TIA 的电路性能。此外,对晶体管的宽度和长度尺寸进行了 200 次蒙特卡罗分析,以分析制造工艺。结果:所提出的 FM TIA 电路提供 40.6dBΩ 跨阻增益和 3.55GHz 频率带宽,同时使用 1V 电源仅消耗 315µW 功率。此外,由于分析通信应用中接收器电路中输出信号的质量至关重要,所提出的 FM TIA 对于 50µA 输入信号的眼图打开约 5mV,而对于 100µA 输入信号,眼图垂直打开约 10mV。因此,可以清楚地显示眼图的垂直和水平开口。此外,跨阻增益的蒙特卡罗分析呈现正态分布,平均值为 40.6dBΩ,标准差为 0.4dBΩ。此外,FM TIA 的输入电阻值在低频时等于 84.4Ω,在 -3dB 频率时达到 75Ω。通过对反馈网络对输入电阻的影响的分析,得出了在没有反馈网络的情况下,输入电阻可达1.4MΩ,由此可见反馈网络的存在对于实现宽带系统的重要性。结论:本文本文介绍了一种基于电流镜拓扑和折叠级联拓扑组合的跨阻放大器,该放大器可放大电流信号并将其转换为输出节点的电压。由于输入节点存在二极管连接的晶体管,因此 TIA 的输入电阻相对较小。此外,六个晶体管中有四个是 PMOS 晶体管,与 NMOS 晶体管相比,它们的热噪声较小。此外,由于前馈网络中未使用无源元件,因此所提出的折叠镜拓扑占用的片上面积相对较小。使用 90nm CMOS 技术参数的结果显示,跨阻增益为 40.6dBΩ,频率带宽为 3.55GHz,输入参考噪声为 664nArms,使用 1 伏电源时功耗仅为 315µW,这表明所提出的电路作为低功耗构建块的性能良好。
吉布森的可供性概念是指环境提供的、生物体能够采取行动的机会。整整十年后,在恒河猴身上发现的镜像神经元 (MN) 表明,运动序列最好被视为动作(抓握),因为它们是由高级目标(如吃食物)而不是效应器的物理特性来组织的。可供性的概念可能会引起 MN 研究人员的共鸣,因为它符合以下观点:运动被组织为整体,而这种整体最好由代理的意图而不是独立于代理的物理属性来定义。最近,Bonini 等人 [1] 将 MN 研究(关于物理世界中的工具性行为)扩展到社会互动,并将 MN 与社会可供性框架联系起来,将同种(“他人”)的感知置于中心。 MN 和社会可供性理论因缺乏清晰度而受到批评 [ 2 ]:将它们结合起来是否有望在理解社会大脑方面向前迈进一步?
抽象使用镜子足够定向,另一只手的运动与另一只手诱导了运动的液化。在这里,我们检验了以下假说:这种镜像现象可以由脑脑摄影(EEG)事件相关的dengronic/同步(ERD/ERS)的基础(EEG)中央alpha节奏(ERD/ERS)(约10 Hz)作为神经物理学的相互作用,以及在糖果中的神经物理学测量,以及在糖果群体之间的相互作用,并在糖果中的互动量。 执行。十八位健康的右手男性参与者在没有镜子(M-)条件下进行了标准听觉触发的单侧(右)或双侧手指运动。在镜子(M +)条件下,在镜子前面进行单侧右手指运动,以诱导同时左手手指运动的幻觉。EEG活性记录在64个头皮电极中,并使用与事件相关的EEG时期进行计算αERD。在M-条件下,在双侧运动中观察到双侧突出的中央αERD,而在单侧右运动中,左中央alpha ERD和右中央alpha ers均观察到。相反,M +条件显示出明显的双侧和广泛的alpha erd dur-
下一代科学标准•1-LS1-1。使用材料通过模仿植物和/或动物如何使用外部零件来帮助它们生存,成长和满足他们的需求,来设计解决人类问题的解决方案。•MS-LS1-3。使用证据支持人体如何是由细胞组组成的相互作用子系统的系统。•MS-LS1-8。收集并综合信息,即感官受体通过向大脑发送消息以立即行为或存储作为记忆来响应刺激。•HS-LS1-2。开发和使用模型来说明相互作用系统的层次结构组织,这些系统在多细胞生物中提供特定功能,例如响应神经刺激的生物运动。•HS-LS1-3。计划并进行调查,以提供证据,表明反馈机制维持体内平衡。•3-LS3-2。使用证据支持特征可能受环境影响的解释。•3-LS4-2。使用证据来构建解释,以解释同一物种个体之间的特征变化如何在生存,寻找伴侣和再现方面具有优势。•HS-LS2-8。评估群体行为对个人和物种的生存和繁殖机会的作用的证据。•K-12科学教育框架:科学与工程实践1,2,3,8
