Fc 型号:RFM210LCF-315D 315 MHz 型号:RFM210LCF-433D 433.92 MHz 调制方式 ASK/OOK 灵敏度 1 Kbps -114 dBm 数据速率 DR 1 3.3 5 Kbps 接收带宽 330 KHz 电源电压 1.8 3.3 3.6 V 工作电流 433.92MHZ 3.8 4.2 mA 休眠电流 1 uA 镜像抑制 IMR 30 dB 工作温度 -40 +85 ℃
随着新生量子处理单元中量子比特数量的增加,第一代实验中使用连接式 RF(射频)模拟电路变得极其复杂。物理尺寸、成本和电气故障率都成为控制系统可扩展性的限制因素。我们开发了一系列紧凑型 RF 混频板来应对这一挑战,通过在具有 EMI(电磁干扰)屏蔽的 40 mm × 80 mm 4 层 PCB(印刷电路板)上集成 I/Q 正交混频、IF(中频)/LO(本振)/RF 功率电平调整和 DC(直流)偏置微调。RF 混频模块设计用于 2.5 至 8.5 GHz 之间的 RF 和 LO 频率。测得的典型镜像抑制和相邻信道隔离分别为 ∼ 27 dBc 和 ∼ 50 dB。通过在环回测试中扫描驱动相位,模块短期幅度和相位线性度通常测量为 5 × 10 − 4 (V pp /V mean ) 和 1 × 10 − 3 弧度 (pk-pk)。通过将 RF 混合板集成到超导量子处理器的室温控制系统中并执行单量子比特门和双量子比特门的随机基准测试表征,验证了 RF 混合板的运行。我们测量了单量子比特过程不保真度为 9 . 3 ( 3 ) × 10 − 4 和双量子比特过程不保真度为 2 . 7 ( 1 ) × 10 − 2 。
第一周:RFIC 和通信电子简介,(RF 微电子学书籍和高频集成电路书籍的第 2 章) 第二周:器件建模(MOS 和 BJT RF 器件模型、晶体管操作、晶体管截止频率),(高频集成电路书籍的第 4 章) 第三周:器件建模、无源元件(电感器、电容、电阻性能和 RF 模型,(高频集成电路书籍的第 4 章和 RF 微电子学书籍的第 7 章) 其他一些参考文献: “MOS 晶体管的操作和建模”Yannis Tsividis、Mc-Graw Hill “用于 RFIC 设计的 MOS 晶体管建模”,Enz 等,IEEE Transaction on Solid- State Circuits,第 35 卷,2000 年 第 4 周:匹配网络的阻抗匹配和品质因数, 第五周:放大器的匹配网络、L 匹配、Pi 匹配、分布式放大器、反馈网络第六周 低噪声放大器(LNA)设计,(《射频微电子学》一书的第 5 章和《高频集成电路》一书的第 7 章) 第 7 周:带 CS、CG 级、具有电感衰减的 LNA,(《射频微电子学》一书的第 5 章和《高频集成电路》一书的第 7 章) 第 8 周:电路噪声分析(热噪声/闪烁噪声)噪声系数 第 9 周:线性和非线性(IM3- IM2)1dB 压缩、互调失真、截取点、交叉调制。期中考试 I 第 10 周:混频器和频率转换(混频器噪声)、无源转换、有源转换、I/Q 调制 PPF,(《高频集成电路》一书的第 9 章、《射频微电子学》一书的第 6 章) 第 11 周:不同的发射器/接收器架构。外差、同差、镜像抑制比 第 12 周:VCO 和振荡器:VCO 基础和基本原理、振荡器的反馈视图、交叉耦合振荡器(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章)。 第 13 周:具有宽调谐范围和变容二极管 Q 值限制的压控振荡器、相位噪声概念和分析、低噪声 VCO 拓扑(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章) 期中考试 II 第 14 周:用于 SNR、BER、EVM 和不同调制的收发器架构(《高频集成电路》一书第 10 章、《射频微电子学》一书第 8 章) 第 15 周:具有不同通信调制/解调的收发器架构和设计示例、注意事项/讲座 29 30 /发射机和接收机的一般考虑