4。F. F. Wilhelm,G。Garbarin。 Brison,I。Candle,I。Lythan,A。Rogalev,高压res。36,445(2016)。
动态光学镜头镜片是透射自适应光学器件,旨在轻松整合到任何光学系统中以校正光学畸变。这些镜头的设计使用10、16或25mm透明的光圈,以覆盖常见的学生尺寸和M32 x 0.75安装线,可以通过使用线程适配器来适应常见的客观螺纹类型。它们可以使用波前传感器或自动软件校正系统进行封闭环控制,以进行像差校正。动态光学变形镜头也可以与低功率激光器一起用于梁的塑形,例如将高斯光束塑造为椭圆形或方形束轮廓或立方相。这些镜片是光学相干断层扫描(OCT),共聚焦显微镜,2光子显微镜和明亮场显微镜的畸变校正的理想选择,以提高图像质量。
摘要 - 灯在控制和观察生物学过程中广泛用于生命科学中,但是在组织内部使用光的长期挑战在于可见光的渗透深度有限。在过去的十年中,已经开发了许多使用光子学和材料科学工具的体内光递送方法,最近证明了基于系统传递的发光纳米材料的非侵入性,深度组织光源。从这个角度来看,我们提供了插入式纳米光源原理的概述,并讨论了它们的优势,而不是现有的体内光传递方法。然后,我们强调了它们最近在现场动物中的光遗传学神经调节和荧光成像中的应用。我们还提供了一个展望部分,介绍了将这些非侵入性光源与其他模式相结合以扩大生物学中光的实用性的可行性。
1 pfaffenwaldring 9,70569德国Stuttgart 2 Stuttgart Photonic Engineering(Scope)Stuttgart Stuttgart研究中心,Stuttgart,Stuttgart,Pfaffenwaldring 57,70569 Stuttgart,70569 Stuttgart,3 printtix optra, 70176德国Stuttgart 4生物材料与生物分子系统研究所(IBBS),Stuttgart大学,Pfaffenwaldring 57,70569德国Stuttgart,德国5 Stuttgart Research Center Systems Systems Biology(SRCSB) 15,70569德国斯图加特6第4物理学院(PI4),斯图加特大学,pfaffenwaldring 57,70569德国斯图特加特,德国7室内进程工程工程和等离子体技术研究所(IGVP) 12,70569德国斯图加特8 michael.heymann@bio.uni-stuttgart.de * andrea.toulouse@ito.uni.uni-stuttgart.depfaffenwaldring 9,70569德国Stuttgart 2 Stuttgart Photonic Engineering(Scope)Stuttgart Stuttgart研究中心,Stuttgart,Stuttgart,Pfaffenwaldring 57,70569 Stuttgart,70569 Stuttgart,3 printtix optra, 70176德国Stuttgart 4生物材料与生物分子系统研究所(IBBS),Stuttgart大学,Pfaffenwaldring 57,70569德国Stuttgart,德国5 Stuttgart Research Center Systems Systems Biology(SRCSB) 15,70569德国斯图加特6第4物理学院(PI4),斯图加特大学,pfaffenwaldring 57,70569德国斯图特加特,德国7室内进程工程工程和等离子体技术研究所(IGVP) 12,70569德国斯图加特8 michael.heymann@bio.uni-stuttgart.de * andrea.toulouse@ito.uni.uni-stuttgart.depfaffenwaldring 9,70569德国Stuttgart 2 Stuttgart Photonic Engineering(Scope)Stuttgart Stuttgart研究中心,Stuttgart,Stuttgart,Pfaffenwaldring 57,70569 Stuttgart,70569 Stuttgart,3 printtix optra, 70176德国Stuttgart 4生物材料与生物分子系统研究所(IBBS),Stuttgart大学,Pfaffenwaldring 57,70569德国Stuttgart,德国5 Stuttgart Research Center Systems Systems Biology(SRCSB) 15,70569德国斯图加特6第4物理学院(PI4),斯图加特大学,pfaffenwaldring 57,70569德国斯图特加特,德国7室内进程工程工程和等离子体技术研究所(IGVP) 12,70569德国斯图加特8 michael.heymann@bio.uni-stuttgart.de * andrea.toulouse@ito.uni.uni-stuttgart.depfaffenwaldring 9,70569德国Stuttgart 2 Stuttgart Photonic Engineering(Scope)Stuttgart Stuttgart研究中心,Stuttgart,Stuttgart,Pfaffenwaldring 57,70569 Stuttgart,70569 Stuttgart,3 printtix optra, 70176德国Stuttgart 4生物材料与生物分子系统研究所(IBBS),Stuttgart大学,Pfaffenwaldring 57,70569德国Stuttgart,德国5 Stuttgart Research Center Systems Systems Biology(SRCSB)15,70569德国斯图加特6第4物理学院(PI4),斯图加特大学,pfaffenwaldring 57,70569德国斯图特加特,德国7室内进程工程工程和等离子体技术研究所(IGVP)12,70569德国斯图加特8 michael.heymann@bio.uni-stuttgart.de * andrea.toulouse@ito.uni.uni-stuttgart.de
1德国波恩大学医院波恩大学医院眼科科,德国波恩的生命与医学科学研究所3.萨尔茨堡癌症研究所免疫学和分子癌研究(SCRI-LIMCR);奥地利萨尔茨堡的帕拉塞尔斯医科大学,奥地利的癌症集群4 Helmholtz中心慕尼黑 - 德国环境健康研究中心,计算生物学研究所,德国Neuherberg,德国Neuherberg 5眼科和视觉科学系,约翰·A·莫兰眼中中心,犹他州犹他州犹他州和犹他州梅雷克尔河畔犹他州的摩尔群岛,斯特拉斯91,巴塞尔,瑞士1德国波恩大学医院波恩大学医院眼科科,德国波恩的生命与医学科学研究所3.萨尔茨堡癌症研究所免疫学和分子癌研究(SCRI-LIMCR);奥地利萨尔茨堡的帕拉塞尔斯医科大学,奥地利的癌症集群4 Helmholtz中心慕尼黑 - 德国环境健康研究中心,计算生物学研究所,德国Neuherberg,德国Neuherberg 5眼科和视觉科学系,约翰·A·莫兰眼中中心,犹他州犹他州犹他州和犹他州梅雷克尔河畔犹他州的摩尔群岛,斯特拉斯91,巴塞尔,瑞士
“使用光子线键合在硅光子集成芯片上的包装可调单模III-V激光”,(2024)Deenadayalan等人,IEEE,IEEE 74th(ECTC),Denver,Colorado,Colorado,USA
高达 2/3 英寸的 C 型接口镜头 高达 750 万像素、2.8µm 像素大小的传感器 我们 C 系列镜头的加固 (Cr) 设计(50g 冲击) 还提供 3.5mm 至 50mm 焦距仪表 (Ci) 版本 TECHSPEC® 紧凑型加固 (Cr) 系列定焦镜头提供稳定的加固功能,保护镜头免受损坏,同时在冲击和振动后保持光学指向和定位。所有单独的镜头元件都粘合到位,以减少图像上的物体偏移。此外,这些镜头具有坚固的机械结构,配有简化的对焦和不锈钢锁定 C 型接口夹。TECHSPEC® Cr 系列定焦镜头非常适合校准成像系统,例如测量和计量、3D 立体视觉、机器人和传感、自动驾驶汽车和物体跟踪。物体到图像的映射是
在人类神经科学中倾向于研究健康不平等的研究,作为个体水平的生物学因素。实际上,健康不平等很大程度上是由于结构上的深层结构因素。结构性不平等是指与与之共存的其他社会群体相比,一个社会群体的系统性劣势。一词涵盖了政策,法律,治理和文化,与种族,种族,性别或性别认同,阶级,性取向以及其他领域有关。这些结构性不平等包括但不限于社会隔离,殖民主义的代际影响以及随之而来的权力和特权分配。在神经科学的子场(即文化神经科学)的子场中,解决不平等的原则越来越普遍。文化神经科学表达了研究参与者周围的生物学与环境背景因素之间的双向关系。但是,这些原理的运作可能对大多数人类神经科学的溢出作用可能没有预期的影响:这种限制是本文的总体重点。在这里,我们提供了我们的观点,即在所有人类神经科学子学科中都缺少这些原则,以加速我们对人脑的理解。此外,我们还提供了实现人类神经科学研究公平的健康公平镜头的两个关键原则的概述:健康框架的社会决定因素(SDOH)框架以及如何使用反事实思维与混杂者打交道。我们认为,这些原则应在未来的人类神经科学研究中优先考虑,而这样做是进一步了解与人脑相互交织的情境背景的途径,从而改善了人类神经科学研究的严格和包容性。
近几十年来,随着全球供应量的增加和超级加工食品(UPF)[1]的消费,肥胖和相关慢性疾病的速度也有所提高。根据广泛采用的NOVA分类系统定义的UPF的最高征服是在美利坚合众国,在人群中,UPF约占成人和儿童消耗的卡路里的60%[2,3]。在流行病学研究中,较高的UPF消费与肥胖症已息息相关[4],肥胖是十多种癌症类型的既定危险因素[5]。因此,人们对UPF消费对癌症风险的潜在影响越来越担心。但是,有关UPF暴露的定义,测量和验证的关键问题尚未解决。科学证据表明,UPF作为癌症发展中的危险的直接或间接作用(通过肥胖)是有限的,并且不一致[4],并且将UPF与CER开发或进展联系起来的潜在机制仍然是投机性的。考虑结直肠癌(CRC),根据世界卫生组织,该组织约占所有癌症病例的10%,使其成为全球第三大常见的癌症,也是与癌症相关死亡的第二大主要原因[6]。在最近的伞审查中,CRC是所考虑的6个地点中唯一的癌症部位,在这种癌症的位置中,观察到较高的UPF暴露与更高的癌症风险之间存在关联[4]。有助于这一观察结果的研究,只有3个(在7中)使用了前瞻性设计,从而减轻了潜在偏见的重要来源。有助于这一观察结果的研究,只有3个(在7中)使用了前瞻性设计,从而减轻了潜在偏见的重要来源。根据NOVA定义了3个前瞻性研究中的每项研究,但每种都使用了不同类型的饮食评估工具。结果是不一致的,没有明确的答案,而是为UPF和癌症的未来研究提出重要问题。首先,研究癌症病因时应定义UPF?通过设计,Nova系统根据加工的目的和程度对食品和饮料进行了分类,而无需考虑营养含量。UPF通常被描述为通常在纤维中低,
