表面微加工成功的光学应用之一是开发静电驱动微机械镜阵列(协调、可移动的反射或折射元件的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜段,用作较大显示器中的一个像素,元件的驱动使用二进制数字控制信号并行协调。在这样的系统中,已经证明简单微机械致动器的制造成品率可以接近 100%。此外,已经确定可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化的 CMOS 电子阵列上构建 MEMS 结构来实现的。已经提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微机械连续膜可变形镜。在自适应光学中,重要的是可变形镜既连续又可精确调节。本文描述的设备是使用表面微机械技术制造的第一种连续镜。� 体微机械连续镜之前已经展示过。2 � 表面微机械镜已在波士顿大学设计、制造和测试。该设备由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于底层表面法向静电致动器阵列上。两个特点将该设备与以前的表面微机械镜系统区分开来。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有因分段边缘而产生的衍射干涉,也没有因填充因子低于 1 而导致的光强度损失。此外,新的可变形镜面装置可以精确、连续地控制镜面元件
摘要。精密热控制 (PTC) 项目是一项多年的努力,于 2017 财年启动,旨在完善超热稳定紫外/光学/红外空间望远镜主镜组件所需的技术就绪水平 (TRL),以对系外行星进行超高对比度观测。PTC 有三个目标:(1) 验证热光学性能模型,(2) 推导热系统稳定性规范,(3) 演示多区域主动热控制。PTC 成功实现了其目标,并将主动热控制技术成熟到至少 TRL-5。PTC 的主要成就是演示了 1.5 米超低膨胀 (ULE ® ) 先进镜面技术开发-2 (AMTD-2) 镜面在相关热/真空环境中暴露于热扰动时优于 2 mK 均方根稳定热控制,以及将 1.5 米 AMTD-2 镜面塑造成皮米精度的能力。此外,还展示了一种分析方法,用于量化热诱导的中空间频率误差,这种误差可能导致日冕仪黑洞中的散斑噪声。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.JATIS .8.2.024001]
摘要:先进镜面技术开发 (AMTD) 项目为期 6 年,旨在完善 4 米或更大的单片或分段紫外/光学/红外空间望远镜主镜组件所需的技术,用于一般天体物理和系外行星任务。AMTD 采用科学驱动的系统工程方法。从科学要求开始,推导出主镜孔径、面密度、表面误差和稳定性的工程规范。影响最大的规范可能是每 10 分钟 10 pm 的波前稳定性。六项关键技术取得了进展:(1) 制造大孔径低面密度高刚度镜面基板;(2) 设计支撑系统;(3) 校正中/高空间频率图形误差;(4) 减轻段边缘衍射;(5) 调整段间间隙;(6) 验证集成模型。 AMTD 成功展示了一种制造尺寸达 1.5 米、厚度达 40 厘米的基板的工艺,该工艺通过堆叠多个核心元件并将它们低温熔合在一起来实现。为了帮助预测在轨性能并协助架构贸易研究,为两个镜子组件(由 AMTD 合作伙伴 Harris Corp. 制造的 1.5 米超低膨胀 (ULE ® ) 镜子和 Schott North American 拥有的 1.2 米 Zerodur ® 镜子)创建了集成模型。X 射线计算机断层扫描用于构建 1.5 米 ULE ® 镜子的“竣工”模型。通过在相关的热真空环境中测试全尺寸和子尺寸组件来验证这些模型。© 作者。由 SPIE 根据知识共享署名 4.0 未本地化许可证出版。全部或部分分发或复制本作品需要完全署名原始出版物,包括其 DOI。 [DOI:10.1117/1.JATIS.6.2.025001]
1 Alikhanyan国家实验室,Alikhanian Brothers Str。2,0036 YEREVAN,亚美尼亚2放射物理与电子学院,Alikhanian Brothers Str。1,0203 Ashtarak,亚美尼亚我们研究了从弱粗糙不透明的表面进行镜面和扩散的散射。开发了一种利用新修改的边界条件的理论。他们显着改变了镜面和散射强度的结果。在波长区域中预测了抗反射,其中光穿透深度为粗糙度均方根高度。在300-400nm区域中,对纳米改造的Si膜实验观察到了这种现象。弥漫性散射(雾霾)光的角度和极化依赖性被发现。表明,雾度主要是p为主导的,并且在表面正态周围是正常的,独立于入射角。
在 RAISELIFE 中测试的镜面涂层:• 2 种 2 层系统(RLF2、RLF4)• 无铅(RLF3)• 粉末漆(RLF5) 失效• 经济高效的面漆• 参考 3 层系统(RLF1)• 6 种防污涂层
陪审团总统:MME。Bahi A.(向上君士坦丁1自由部)。不忠:MME。Khelalfa K.(McB- U Constantine 1弗雷特斯)。考试:MME。feali I.(cmb- u constantine 1镜面)。
分析了上个世纪地面望远镜的成本数据,以了解口径大小与成本之间关系的趋势。我们发现,对于 1980 年之前建造的口径,成本与口径大小的 2.8 次方成比例,这与 Meinel (1978) 的先前发现一致。1980 年以后,“传统”单片镜面望远镜的成本与口径的 2.5 次方成比例。在此期间建造或在建的大型多镜面望远镜(Keck、LBT、GTC)似乎偏离了这种关系,并因此节省了大量成本,尽管尚不清楚这些结构遵循什么幂律。我们讨论了当前成本-口径大小数据对未来 10 到 20 年拟议的大型望远镜项目的影响。在成本-口径关系中自然趋向于 2.0 次方的结构将是未来极大口径的有利选择;我们的预期是,太空结构最终将比地面结构获得经济优势。
摘要:研究大型空间望远镜(LST)的概念设计和在轨装配任务规划问题。提出了分段式镜面设计,并开发了考虑机械手工作空间覆盖范围的机器人装配概念。为了减少在轨装配周期并保护易碎的镜面结构,采用几种新算法优化机器人装配路径。首先,建立装配路径与装配件数之间的映射,快速生成优化问题的候选解。其次,提出了结合蚁群算法和遗传算法的两级混合优化框架。混合优化方法能够快速收敛到接近全局最优解。通过仿真验证了所提出的模型和算法,结果表明所开发的方法可以显著提高LST的在轨装配任务效率。 © 2020 光学仪器工程师协会 (SPIE) [DOI: 10.1117/1.JATIS.6.1.017002]