摘要 电热超表面因能够动态控制热红外辐射而受到广泛关注。虽然以前的研究主要集中在具有无限单元格的超表面,但有限尺寸效应是实际开发具有快速响应和广泛温度均匀性的热超表面的关键设计因素。在这里,我们研究了由有限阵列尺寸的金纳米棒组成的热超表面,其仅需几个周期就能实现接近无限情况的共振。更重要的是,由于阵列尺寸有限,占用空间如此之小,导致响应时间降至纳秒级。此外,发现垂直于纳米棒轴线方向上的单元格数量对共振和响应时间不敏感,从而提供了长宽比的可调谐性,可以将温度均匀性提高到亚开尔文水平。
GaSb 在长波长器件中有许多应用,例如带间级联激光器和红外光电探测器 [1-2]。将 GaSb 相关材料单片集成到硅上对于扩展长波长器件的功能和硅平台上的光子集成具有很高的吸引力 [3]。此外,考虑到现代智能手机中红外设备(包括传感器和投影仪)的日益普及,集成到硅上是降低制造成本、减小尺寸和提高产量的有效解决方案。然而,与 GaAs/Si 和 InP/Si 材料系统相比,GaSb/Si 异质外延还远未成熟。在本研究中,以在 GaAs 衬底上生长的 GaSb 为参考,我们研究了两种不同的集成方案:在 GaAs-on-Si 模板上进行 GaSb 的界面失配 (IMF) 生长和使用长宽比捕获技术直接在 V 型槽 Si 上生长 GaSb。
例如音频文件、视频文件、文档、图像或文本(包括任何输出参数,例如长宽比、样式等)(统称为“ 输入 ”)。服务和软件将使用输入生成输出,例如图像、文本、文本效果、矢量图形文件、音频文件或视频文件,这些输出将在服务和软件中提供(“ 输出 ”)。输入和输出是您的内容(而不是内容文件或示例文件),条款中有关内容的所有规定均适用于输入和输出。生成 AI 功能、输入和输出必须按照条款使用,条款可能会不时修改。Adobe 保留随时自行决定限制、禁用、暂停或终止您使用或访问生成 AI 功能的权利,无需事先通知您。2. 输入。您对您的输入负全部责任。您不得提交任何输入:(a) 包含商标
在这项工作中,我们报告了一种新颖的技术,用于直径小于30 nm的纳米木制造技术,其长宽比大于20,而制造面积不受限制。更重要的是,可以同时制造具有多个直径的纳米柱。在我们的技术中,图案是由电子束光刻(EBL)编写的,在离子耦合等离子体(ICP)蚀刻期间,铬(Cr)lm被沉积为硬膜。在Cr边缘发生的天线效应会导致较小的硬面膜,因此随后可以形成直径较小的纳米膜。由于我们的技术独立于底物材料,因此它也可以应用于其他半导体材料,从而在许多领域中提供了有希望的应用。此外,还提供了基于本文中制造的纳米阵列的SERS模拟,以揭示拉曼频谱强度增强的起源。
火山。几项研究将这些现象与岩浆和水热流体联系起来。例如,在经过广泛研究的Campi Flegrei Caldera的情况下,最近的文献表明,热弹性弹性(TPE)包含模型适合描述经常伴随其无序发作的观察到的变形和地震性。最近的一些著作提出了分析解决方案,以建模薄盘形纳入的情况,即厚度比半径小得多。由于这种限制可能是关键的,随后将TPE包容性模型扩展到具有任意厚度的圆柱形夹杂物,通过将它们表示为几个薄二张圆形包含物(元素)的叠加。在本文中,我们演示了如何估计由圆柱形TPE夹杂物引起的位移和应力场的最小元素数量(厚度超过半径)。对于大于0.3的长宽比,单个元素模型将不再被证明适合以良好的精度表示位移和压力。
图1。主要刺激和行为结果。(a)行为任务中使用的48个对象图像和与事件相关的fMRI运行。图像由六种对象类型的8个示例组成:食品,食品工具,其他工具,自我工具,可操作的物体和动物。示例具有两种广泛的长宽比(深色颜色=较高的纵横比;较浅的颜色=较低的纵横比),并且在对象类型之间具有可变的,匹配的方向。(b)针对对象类型三重态任务的组平均RDM和2D MDS解决方案。(c)组的RDM和2D MDS解决方案,用于对象形状三重态任务。对于(b)an(c)Spearman的三重态任务和模型RDMS之间的ρ相关性。* = p <0.05。(d)用于区分工具与可操作对象的三个任务的平均李克特评分的条图。* = p <0.05。错误条是正常的95%CI
纳米级过渡金属三硫属化物如 TiS 3 在基础研究和应用开发方面都表现出巨大的潜力,但它们的自下而上的合成策略尚未实现。在这里,我们探索了 TiS 3 的化学气相沉积 (CVD) 合成,其晶格各向异性使得其能够沿 b 轴优先生长,从而得到长宽比可通过生长温度调节的矩形纳米片或纳米带。所获得的纳米结构在保持与原始半导体 TiS 3 一样的光谱和结构特征的同时,表现出高电导率和超低载流子活化势垒,有望作为纳米级导体。我们的实验和计算结果表明,CVD 生长的 TiS 3 中 S 2 − 2 空位的存在是造成重 n 型掺杂直至简并能级的原因。此外,预计通过用环境中的氧原子钝化 S 2 − 2 空位可以恢复半导体性能。因此,这项工作预示着利用缺陷工程三硫属化物半导体构建纳米级电子器件的诱人可能性。
纳米级过渡金属三卡构基化金属元素(TMTC)(例如TIS 3)对基本研究和应用开发都显示出很大的潜力,但是他们的自下而上的合成策略仍应实现。在这里,我们探索了TIS 3的化学蒸气沉积(CVD)合成,其晶格各向异性使B轴的优先生长使矩形纳米片或纳米虫具有具有生长温度可调节的长宽比的矩形纳米片或纳米骨。获得的纳米结构,同时保持光谱和结构特性,如原始的半导体TIS 3的特性,表现出较高的电导率和超低载体激活屏障,这是纳米级导体。我们的实验和计算结果表明,CVD生长的TIS 3中存在S 2 2-空缺,导致重型N型掺杂到退化水平。此外,预计将半导体特性通过从环境中用氧原子钝化S 2 2-空位来恢复。这项工作因此预示着使用缺陷工程的三卡氏菌元素半导体构建纳米级电子的诱人可能性。
过去几年,纳米纤维素 (NC),即纳米结构形式的纤维素,已被证明是当代最突出的绿色材料之一。由于 NC 材料具有丰富、高长宽比、更好的机械性能、可再生性和生物相容性等吸引人的优异特性,人们对此的兴趣日益浓厚。丰富的羟基官能团允许通过化学反应进行广泛的功能化,从而开发出具有可调特性的各种材料。在这篇综述中,基于对最新研究的分析(特别是过去 3 年的报告),描述和讨论了纳米纤维素,特别是纤维素纳米晶体 (CNC) 的制备、改性和新兴应用的最新进展。我们首先简要介绍纤维素的背景、其结构组织以及纤维素纳米材料的命名法,供该领域的初学者参考。然后,详细阐述了生产纳米纤维素的不同实验程序、其特性和功能化方法。此外,还介绍了纳米纤维素在纳米复合材料、Pickering 乳化剂、木材粘合剂、废水处理以及新兴生物医学应用中的一些最新和新兴用途。最后,讨论了基于 NC 的新兴材料的挑战和机遇。
新的光学特性在光热疗法、比色传感、生物成像和光电子学中具有潜在的应用。[1–8] 在过去二十年中,随着 GNR 合成方法的不断改进,[9,10] 人们开发出了许多用于排列和组装 GNR 的技术,从而获得了新的光学特性。[11] GNR 具有纵向和横向表面等离子体共振 (LSPR 和 TSPR),当光的电场分别沿长度和直径方向取向时,会激发这些共振。LSPR 比 TSPR 更强烈,LSPR 的波长取决于纳米棒的长宽比,从而可以调谐到近红外光谱。 GNR 的取向可以选择性地激发 LSPR 或 TSPR,目前已通过拉伸聚合物薄膜[12–14] 静电纺丝聚合物纤维[15,16] 控制蒸发介导沉积[17,18] 模板沉积[19–23] 皱纹辅助组装[24] 机械刷[25] 和液晶分散[26–31] 等方法实现。尽管其中一些取向技术可以提供高度有序性,但利用施加的磁场或电场对分散在液体中的 GNR 进行动态取向的能力因其速度和可逆性而颇具吸引力。利用电场对 GNR 进行取向,