磁响应软材料是下一代软机器人、假肢、手术工具和智能纺织品的有前途的构建模块。然而,迄今为止,制造具有极端长宽比的高度集成磁性纤维(可用作可操纵导管、内窥镜或功能性纺织品)仍然具有挑战性。本文提出了多材料热拉伸作为材料和加工平台,以实现数十米长的柔软、超可拉伸且高弹性的磁性纤维。展示了直径低至 300 μ m、长宽比为 10 5 的纤维,将纳米复合域与嵌入软弹性体基质中的铁磁微粒集成在一起。通过选择适当的填料含量,必须在磁化密度和机械刚度之间取得适当的平衡,展示了可承受 > 1000% 应变的纤维,它们可以被磁力驱动并举起高达自身重量 370 倍的重量。磁性纤维还可以集成其他功能,如微流体通道,并编织到传统纺织品中。研究表明,这种新型磁性纺织品可以清洗并承受极端的机械约束,并且在磁力驱动下可以折叠成任意形状,这为医疗纺织品和软磁系统领域的新奇机遇铺平了道路。
微凝胶的多孔结构显着影响其特性,因此,它们适合各种应用,尤其是作为组织sca of的构件。孔隙度是微凝胶 - 细胞相互作用的关键特征之一,显着增加了细胞的积累和增殖。因此,以无效的方式调整微凝胶的孔隙率很重要,但仍然具有挑战性,尤其是对于非球形微凝胶而言。这项工作提出了一种直接的程序,以使用在微凝胶聚合过程中使用所谓的共抗效应来制造复合形的聚(N-异丙基丙烯酰胺)(PNIPAM)微凝胶。因此,在停止流动过程中,反应溶液中的经典溶剂从水到水 - 乙醇混合物交换。对于制造过程中甲醇含量较高的圆柱形微凝胶,观察到更大程度的崩溃,其长宽比增加。此外,随着甲醇含量的变化而崩溃和肿胀的速度变化,表明经过修改的多孔结构,由电子显微镜显微镜确认。此外,在冷却过程中会发生微凝胶变体的肿胀模式,从而揭示其热反应是高度异质过程。这些结果表明了一种新的程序,可以通过在定位光刻聚合过程中引入共溶性效应来制造任何细长的2D形状的PNIPAM微凝胶,并具有量身定制的多孔结构和热回应性。
摘要。在设计国防基础设施和设施时,可用的著名资源,即 UFC 3-340- 02、TM 5-1300、ASCE/SEI 59-11 和 IS 4991,主要考虑球形炸药爆炸的试验结果,而战争和工业/常规行动中使用的大多数炸药都具有圆柱形/砖块的几何形状。文献中现有的研究工作考虑了圆柱形 TNT 的各种长宽比,圆柱形 TNT 的纵轴垂直于板,砖块 TNT 的长度平行于支撑物,其长度和宽度与单向板接触,结果表明,在相同质量的炸药的三种几何形状(圆柱形、球形和砖块)中,圆柱形炸药产生的压力最大,砖块炸药产生的压力最小。作者发现,砖块/圆柱形炸药相对于板边界条件的倾斜度会影响能量分布和相应的板损坏。本文使用 Abaqus 软件研究了倾斜砖块 TNT 炸药对接触爆炸下板坯响应的影响,重点比较了板坯损伤和其他响应,炸药倾斜度从 0 到 90 变化,增量为 22-1/2 度。砖块炸药的长度与板坯支撑对齐,其数值结果与实验结果具有很强的相关性。结果表明,最大反射压力随砖块炸药的倾斜度而变化,从而影响板坯损伤,包括穿孔尺寸和几何形状。
空气通道。聚氨酯前体泡沫所用的浸渍树脂一般为酚醛树脂、环氧树脂或糠醇。研究发现,糠醇浸渍聚氨酯泡沫的碳化速度高于酚醛树脂和环氧树脂浸渍泡沫的碳化速度[8]。前体泡沫的泡孔尺寸分布是决定所得碳泡沫泡孔尺寸分布的重要因素[8]。Vinton 等人 [9] 和 Franklin 等人 [10] 研究表明,RVC 的泡孔结构与前体泡沫几乎相同。据报道,通过在沿一个方向压缩前体的同时对其进行碳化,可以生产出具有特定长宽比泡孔的各向异性碳泡沫[11]。因此,要从开孔聚氨酯泡沫中获得具有不同泡孔尺寸(通常表示为每线性英寸的孔隙数,ppi)的 RVC,需要在聚氨酯发泡过程中控制泡孔尺寸。在聚合物基质中添加少量粘土可显著改善多种性能 [12,13]。复合材料合成中最广泛使用的粘土是蒙脱石 (MMT)。粘土颗粒具有层状片状结构,其中片状厚度约为 1 纳米,横向尺寸可达 1 微米。蒙脱石粘土被发现是聚氨酯泡沫的强效开孔剂 [14]。
我们报道了一种通过原子层沉积 ALD 在长宽比超过 35:1 的非常窄的孔内共形生产薄的、完全连续且高导电性的铜膜的方法。纯铜薄膜由新型铜 I 脒基前体、铜 IN、N -二仲丁基乙脒和分子氢作为还原剂生长。该铜前体在汽化过程中为液态,因为其熔点 77°C 低于其汽化温度 90-120°C 。因此,前体蒸汽的传输非常可重复且可控。碳和氧杂质低于 1 原子%。每个循环的生长在 SiO 2 或 Si 3 N 4 表面上为 1.5-2 Å/循环,但在金属 Ru、Cu 和 Co 表面上仅为 0.1-0.5 Å/循环。在氧化物表面,铜原子形成孤立的铜晶体,经过更多沉积循环后合并为粗糙的多晶膜。在 Ru 和 Co 金属表面上,ALD Cu 密集成核,形成光滑且附着力强的薄膜,即使对于薄至 4 个原子层的薄膜,这些薄膜也是连续的。在 2 nm Ru 基底上沉积 4 nm Cu 时,薄层电阻低于 50 / ,这足以制作用于电镀 Cu 互连线的种子层。© 2006 电化学学会。DOI:10.1149/1.2338632 保留所有权利。
随机皮瓣受长宽比限制,影响其临床应用。本研究旨在综述人参皂苷Rb1对随机皮瓣成活的影响,并从代谢组学方法分析其作用机制。将Sprague-Dawley大鼠分为对照组、缺血再灌注(I/R)组和人参皂苷Rb1组。采集大鼠血清和中部皮瓣组织进行1H-NMR波谱检测和计算机模式识别分析。术后10 d,Rb1组背部皮瓣成活率(61.06±3.71)%明显高于I/R组(50.46±1.41)%。术后24 h,1H-NMR波谱分析显示I/R组血清中脂质含量增加。与I/R组血清相比,Rb1组血清谷氨酸、肌酸、富马酸含量明显升高,乳酸、胆碱、磷酸胆碱、N-乙酰糖蛋白、尿囊素含量降低。皮瓣组织中谷氨酰胺、柠檬酸、牛磺酸、富马酸的ATP/ADP/AMP含量升高,乳酸、乙酸、乙酰乙酸的ATP/ADP/AMP含量明显降低。提示人参皂苷Rb1可能具有提高背部随意皮瓣成活率和保护作用。
摘要 发现和分类脑肿瘤是医学图像分析的重要组成部分,需要先进的深度学习方法和优化算法。认识到脑肿瘤诊断迫切需要准确的方法,我们提出了一种综合方法,整合了包括数据预处理在内的各个阶段。在这个预处理阶段,我们采用长宽比归一化和调整大小等技术来形成标准化数据集。通过标准化图像尺寸,我们旨在改进后续过程,如特征提取和分割,减少潜在的扭曲。建议的模型是使用卷积神经网络 (CNN) 来寻找使肿瘤和非肿瘤区域彼此不同的模式和特征。为了克服下采样过程中的复杂部分和精细纹理,提出的模型与 U-Net 架构混合,可提供 98% 的准确和稳健结果。此外,使用交并比 (IOU) 来测量 Dice 系数,以确保它是否对类别不平衡具有鲁棒性。这显示了一个直观的解释,0.83 和 0.9 的较高值表示强大且更好的分割性能。该模型使用 VGG-16 进一步开发,以对肿瘤等级进行分类。在准确分割肿瘤等级方面,从分割的肿瘤照片中得出的相关特征提供了 73% 的满意度。为了克服复杂性和过度拟合问题,蝴蝶优化算法与 VGG-16 混合,从而在等级分类中提供增强的输出。所提出的模型在肿瘤和非肿瘤识别和分类方面优于其他机器学习 (ML) 和深度学习 (DL) 方法,准确率为 99.99%。为了进一步评估所建议模型的性能、移动性和能源经济性,它还在 JETSON Orin 硬件中实现。
锂 - 尼克尔 - 甲状腺 - 粘胶氧化物(NMC)嵌入了固体 - 电解质中的含有复合阴极,以与金属阳极的高能量密度相匹配。在充电/放电期间,阴极复合材料通常通过晶粒内的微裂缝,沿晶界的微裂缝进化以及在粒子 - 电解质界面处的分层来降解。实验证据表明,调节晶粒的形态及其晶体学取向是缓解体积扩张引起的应力和裂纹的有效方法,从而稳定了电极的电化学性能。但是,尚未对晶体方向,谷物形态和化学机械行为之间的相互作用进行整体研究。在这种情况下,开发了热力学一致的计算框架,以了解微结构调制对嵌入基于硫化物的固体电解质中的多晶NMC二级粒子的化学机械相互作用的作用。采用相位场断裂变量来考虑裂纹的启动和传播。采用了一组扩散的相位参数来定义晶粒,晶界,电解质和粒子 - 电解质界面之间的化学机械性能的过渡。此建模框架是在开源有限元包装驼鹿中实现的,以求解三个状态变量:浓度,位移和相位场损伤参数。这项研究的发现提供了设计固态电池的预测见解,这些电池可提供稳定的性能,并减少断裂的演变。进行了一项系统的参数研究,以探索长宽比,晶粒晶体方向的影响以及通过复合电极的化学机械分析的界面断裂能。
大量核素和电子的自组织导致物质出现不同相。相代表一种可以在空间上无限复制的组织方式,其特性会随着外场的变化而不断变化,与其他相不同。因此,当材料经历相变时,某些系统特性会发生变化。相变的一般特征是,它要么涉及根据相变的朗道范式 1 – 3 的序参量的不连续性,要么涉及拓扑不变量的变化 4、5。发现、表征和控制物质的不同相是凝聚态物理学和材料科学的核心任务。特别是,对二维系统中相变的研究在促进我们对相变的理解方面发挥了至关重要的作用(图 1)。 2D 材料 6 – 10 是可以在两个方向上无限复制,但在第三个方向上具有原子级厚度的物质。例如,单层 MoS 2 的厚度为 6.7 Å,在通过机械剥离 6 制备的实验室样品中,平面内厚度通常为微米,因此,其长宽比为 ~10 3 或更大。为了进行比较,一张典型的 A4 大小的纸(~100 μm × 29.7 cm × 21 cm)的长宽比也相似,为 ~10 3 。虽然 2D ↔ 3D/1D 相变无疑是有趣的讨论主题,但在这里,我们重点关注 2D → 2D 转变。最早对 2D 相变的研究大多是理论上的;例如二维 Ising 自旋模型的精确解 11 、 Hohenberg–Mermin–Wagner 定理的提出 12 , 13 以及 Kosterlitz–Thouless 转变的发现 14 , 15 (图 1 )。20 世纪 80 年代初,半导体技术的进步使得人们能够实验研究半导体界面和强磁场下的二维电子系统,从而带来了突破性的
我们描述了如何将轴棱镜和透镜直接组合起来,为激光材料加工应用提供简单而有效的光束整形解决方案。我们产生了 1550 nm 的高角度伪贝塞尔微光束,这很难通过其他方法产生。结合飞秒脉冲的适当拉伸,我们可以获得半导体内部的优化条件,从而开发出高纵横比折射率写入方法。使用超快显微镜技术,我们用 200 fs 和 50 ps 脉冲表征了硅内部传递的局部强度和触发的电离动力学。虽然两种情况下产生的等离子体密度相似,但我们表明,重复的皮秒辐照会在激光束方向上自发地产生永久性的改变,从前表面损伤到辐照硅晶片的背面。与当今为电介质演示的直接微爆炸和微通道钻孔条件类似的条件仍然无法实现。尽管如此,这项工作证明了能量密度高于以前在半导体中实现的水平,并且是一种新颖的冲击写入模式,可以在硅中创建长宽比超过 ~700 的结构,而无需任何光束运动。沿观察到的微等离子体通道估计的电导率瞬态变化和测量的接近光速的电离前沿支持了在 GHz 重复率下光学可控的垂直电连接的设想。根据测量的超过 10 −2 的正折射率变化,通过冲击写入获得的永久性硅改性是光导结构。这些发现为电气和光学硅通孔的独特单片解决方案打开了大门,而硅通孔是 3D 芯片堆栈中垂直互连的关键元件。