近年来,自主导航变得越来越流行。但是,大多数现有的方法在公路导航方面有效,并利用了主动传感器(例如LIDAR)。本文使用Passive传感器,特别是长波(LW)高光谱(HSI)的遍历性估计,重点介绍了自主越野导航。我们提出了一种方法,用于选择一部分高光谱带,该方法通过设计一个最小的传感器设计带选择模块,该模块设计一个最小的传感器,该模块设计了一个最小的传感器,该模块可以测量稀疏采样的光谱带,同时共同训练语义段网络网络,以进行遍历性估计。使用我们的LW HSI数据集在包括森林,沙漠,雪,池塘和开放式田野的各种越野场景中证明了我们方法的有效性。我们的数据集包括在各种天气条件下白天和夜间收集的图像,包括具有广泛障碍的具有挑战性的场景。使用我们的方法,我们学习了所有HSI频段中的一个小子集(2%),这些子频段可以在利用所有高光谱带时获得竞争性或更好的遍历性估计精度。仅使用5个频段,我们的方法能够实现平均类别的效果,该级别仅比使用完整的256波段HSI低1.3%,而仅比使用250频段HSI实现的效果仅比使用了0.1%,这证明了我们方法的成功。
b'Introfuction。现代宇宙学的目标之一是曲率扰动P(K)的原始功率谱的表征。在通货膨胀期间,在辐射和物质时代的哈勃半径经典和重新输入膨胀的半径时,长波长量子波动扩增,为重力不稳定的初始种子提供了宇宙大规模结构中的初始种子。P(k)上最严格的约束来自宇宙微波背景(CMB)各向异性的表达,揭示了在范围内非常大的尺度上的近规模不变的,略带红色的频谱[0。001,0。1] mpc \ xe2 \ x88 \ x92 1。Planck DR3数据在k = 0时限制了p(k)的幅度a s。05 MPC \ XE2 \ x88 \ x92 1及其Spec-Tral索引到LN 10 10 A = 3。044 \ xc2 \ xb1 0。014和N S = 0。9649 \ xc2 \ xb1 0。0042分别为68%Cl [1]。 银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。 Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。 如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。0042分别为68%Cl [1]。银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。最近的研究表明,这种标量引起的重力波背景(SIGWB)可以为PTA检测提供一个能力的解释,并且可能会对来自贝叶斯观察的许多其他候选者进行案例[9,10](但是,请参阅[9 \ xe2 \ x80 \ x80 \ x9313],以ellite tountion of Extimation of Exteration to inton of toseation portod of tosod of tosod of to pod stod of pod,以供pbod of profod of prod。 [11 \ xe2 \ x80 \ x9316]用于替代分析)。因此,设计这一假设的进一步检验至关重要,并且与cos-'
瑞创科技旗下瑞创微电子有限公司是全球对红外热传感技术理解最为全面的企业,拥有数十年热传感器及摄像头模组自主研发和制造经验,与全球客户及合作伙伴共同为世界提供更美好的未来和生活。
摘要:由于成本效益和易于操作,室温长波红外(LWIR)检测器比低温溶液优先。当前未冷却的LWIR探测器(例如微量体计)的性能受到降低的灵敏度,缓慢的响应时间和缺乏动态光谱可调性的限制。在这里,我们提出了一个基于石墨烯的有效室温LWIR检测器,利用其可调的光学和电子特性,具有高检测性和快速响应时间。固有的弱光吸收可以通过与光腔耦合的图案化石墨烯上的狄拉克等等离子增强。通过不对称载体生成环境,通过Seebeck效应将吸收的能量转化为光伏。此外,通过静电门控实现8-12μmLWIR带中的动态光谱可调性。拟议的检测平台铺平了新一代未冷却的基于石墨烯的LWIR光电探测器,用于诸如分子传感,医学诊断,军事,安全和空间之类的广泛应用。关键字:红外探测器,石墨烯,二维材料,狄拉克等离子,光热效应
摘要:长波下行辐射(LWDR)是气候与水文模型中的重要驱动参数。与传统地面测量相比,遥感在估算全球 LWDR 方面具有独特的优势。然而,对于目前的遥感任务而言,与典型的具有全球覆盖和小时时间分辨率的卫星 LWDR 产品一样,云和地球辐射能量系统-天气图(CERES-SYN)大气顶部和地表通量以及云的空间分辨率较低(1°×1°)。现有的遥感 LWDR 产品在精度、时空分辨率以及解释和量化不同尺度上长波辐射变化的能力方面仍有很大改进空间。为了克服这些限制,本文基于中分辨率成像光谱仪(MODIS)测量,开发了一种新的全球 LWDR 产品,该产品具有更高的精度(全球 RMSE < 30 W m −2)、高时间分辨率(小时)和空间分辨率(5 km)。它是长期地球系统时空无缝辐射收支数据集(简称LessRad)中的一个LWDR产品,作为第一个长期高分辨率时空连续的LWDR产品(2002-22,1小时,5公里),LessRad在研究更精细尺度上的LWDR时空变异性方面显示出优势,并为分析陆气相互作用、量化气候反馈等各种应用提供了宝贵的数据源,对理解地球能量收支和动态具有潜在的帮助。
b'B'The分数量子厅(FQH)状态是物质拓扑阶段的一些最佳研究的例子。它们的特征是各种拓扑量,例如准粒子电荷,霍尔电导,霍尔的粘度和边缘理论的手性中心电荷,这从根本上是由电子之间的非平凡相关性引起的。在这些状态下相关性的一种特别用途是\ xe2 \ x80 \ x9cguiding Center \ xe2 \ x80 \ x80 \ x9d静态结构因子\ xc2 \ xaf s(k),在长波长的情况下,在平移和In-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-nimememementscements中是四分之一的Quartic [k)。FQH接地的一个基本特征是,确定此四分之一术语的第四个等级张量满足所谓的\ xe2 \ x80 \ x9Chaldane绑定\ Xe2 \ x80 \ x80 \ x9d [2,3],较低的结合在长波长度的强度下,构成了hall [4 hall sects of Hall ted the the Hall [4 hall [4 hall]的强度。在旋转不变的情况下,当引导中心静态结构因子和霍尔粘度张量的四分之一项都由每个pa-rameter确定时,界限可以表示为两者之间的简单标量不平等。在物理层面上,可以理解为将QH状态与拓扑琐碎的产物状态区分开的相关性最小的存在,即,前者不能绝热地变形到后者。在FQH上进行了许多工作,涉及一类旋转不变的模型波函数(Laughlin [6],Moore-Read [7],Read-Rezayi [8]),与欧几里得的保形场理论有关,并使Haldane结合饱和[9,10]。这些模型状态是属于某些非常特殊模型的汉密尔tonians的最高密度状态(零能量特征态),并且在理解FQHE方面发挥了关键作用。他们非常特殊的功能之一是,它们是\ xe2 \ x80 \ x9cmaxmaximally手性\ xe2 \ x80 \ x9d,因为它们在圆柱形几何形状中仅包含一个与半融合状态相对于一个cut的圆柱状态的贡献。这是\ xe2 \ x80 \ x9cmaximal手性\ xe2 \ x80 \ x9d的非常强烈的条件:最大性手性的较弱版本是,纠缠谱的低较低部分(或同等地,拓扑模式)仅具有一种chirality的贡献。这个较弱的版本通常会被汉密尔顿人的基础状态所满足,而汉密尔顿人的基础状态却远离模型。在本文中,我们解决了一个问题 - 饱和hal -dane结合需要什么条件?我们在附录B中显示,连续旋转不变性是必需的。之所以如此,是因为角动量的波动有助于O(K \ Xe2 \ X84 \ X93)4的静态结构因子4,但对HALL粘度张量不足。对于旋转不变的系统,先前已显示[11 \ xe2 \ x80 \ x93 13],即\ xce \ xbd \ xbd \ xe2 \ x88 \ x92 = p /(2 np \ xe2 \ xe2 \ x88 \ x92 1)jain状态[14]不满意,不满意n> 1,不满足n> 1,不满意 任何一个。这些FQH状态包含旋转不变的基态上方的Spin-2重力激发的两种手势。特别是一些研究支持了后者[9]。这会导致长波长的静态结构因子的相关性比霍尔粘度的大小所需的更大的相关性。但是,尚不清楚是否需要强大的最大性手性或较弱的版本足以使各向同性FQH状态的结合饱和。我们以数值调查了这个问题,并提供了明确的证据,表明弱的最大手性不足。因此,我们期望只有理想的保形块波形饱和haldane结合。我们使用旋转不变的二维Hamilto-Nians在\ xce \ xbd = 1 / 3,1 / 5和2/5的FQH状态的长波长极限中计算静态结构因子。为此,我们在圆周的无限缸[15]上使用密度矩阵重新归一化组,并通过考虑大的l y /\ xe2 \ x84 \ x93来接近2D-LIMIT。我们计算O(K \ Xe2 \ X84 \ X93)的系数\ XC2 \ Xaf S 4)4项在指南中心静态结构因子的长波长膨胀中,并表明它比Haldane绑定的Haldane by by for Haldane by to haldane by to for for for Haldane to for Haldane to for Haldane to for for for f q QH的Haldane Hamiltonians的FQH地面。我们通过分析围绕模型'
在本信中,我们介绍了基于五叠自组装 InAs/InAlGaAs 量子点作为活性介质的长波长微盘激光器,这些量子点通过固体源分子束外延在 InP(001)衬底上生长。直径为 8.4 lm 的量子点微盘激光器在脉冲光泵浦条件下在室温下工作。实现了 1.6 lm 的多波长激光发射,低激光阈值为 30 lm W,品质因数为 1336。通过收集到的近场强度分布的“S”形 L-L 曲线、线宽变窄效应和强散斑图案验证了激光行为。所展示的具有低阈值和超紧凑占地面积的长波长激光器可以在集成气体检测和高度局部化的无标记生物和生化传感中找到潜在的应用。
扩散式卫星星座为导弹发射检测、低信噪比 (SNR) 红外搜索与跟踪 (IRST) 以及空间域感知提供了极具吸引力的解决方案。与将资产置于地球静止轨道 (GEO) 相比,低地球轨道/中地球轨道 (LEO/MEO) 的 Delta-V 较低,地面和大气分辨率以及可实现的 SNR 更高,并且技术更新可以更容易地完成。此外,分散式星座能够更好地吸收单个资产的损失,而不会遭受相应的系统能力损失,尤其是在采用平台网络和冗余时。部署多达数百颗卫星的星座的一个主要考虑因素是,与它们要取代的少数 GEO 资产相比,它们的实施必须在不大幅增加成本的情况下完成。此外,部署必须在短时间内(而不是几十年)完成才能实现运营效率,因此实现高制造率的能力至关重要。最后,虽然卫星平台、通信系统和处理的价格已经下降,但传统使用的红外传感器的价格却没有下降。
与其IRF值保持不变; RF LW为3.8 w m 2,比IRF LW高。因此,Hansen等人。(1981)发现,根据是否考虑了RF还是IRF,净强度为2.6%或4%的净强度(LW + SW)。CO 2 IRF SW在ERF框架中重新出现的观点,该框架采用TOA的视角(例如,图。Ramaswamy等人的14-6,2018)。 相比之下,Cess等人。 (1993)报告说,CO 2 IRF SW为负,约占IRF LW的6%(用于330 ppm的doubl)。 这种观点已经建立,尽管并非所有研究都发现了负面的CO 2 tropo-pause irf SW(Forster等,2001)。 明显的障碍是因为Cess等人。 (1993)定义在对流层面上的强迫; Hansen等。 (1981)选择TOA。 这仍然留下一个问题,即哪种观点最有价值,以及它们是否可以和解。 Myhre等。 (1998)还发现,RF LW的CO 2(0.11 w m 2)的CO 2为负IRF SW,从278 ppm增加了一倍。 然而,在这里很重要的是,额外的SW吸收温暖了平流层(与仅LW的情况相关)。 在RF框架中,Myhre等人。 (1998)计算出这种变暖导致对流层顶RF LW(0.05 W m 2);因此,由于SW强迫引起的净RF(0.06 W m 2)约为IRF SW的一半。 对于增加平流层H 2 O的浓度,Forster和Shine(2002)(另见Forster等,2001; Myhre等,2007,2009)发现了Tropapause irf SW,占RF LW的20%。 Etminan等。Ramaswamy等人的14-6,2018)。相比之下,Cess等人。(1993)报告说,CO 2 IRF SW为负,约占IRF LW的6%(用于330 ppm的doubl)。这种观点已经建立,尽管并非所有研究都发现了负面的CO 2 tropo-pause irf SW(Forster等,2001)。明显的障碍是因为Cess等人。(1993)定义在对流层面上的强迫; Hansen等。(1981)选择TOA。 这仍然留下一个问题,即哪种观点最有价值,以及它们是否可以和解。 Myhre等。 (1998)还发现,RF LW的CO 2(0.11 w m 2)的CO 2为负IRF SW,从278 ppm增加了一倍。 然而,在这里很重要的是,额外的SW吸收温暖了平流层(与仅LW的情况相关)。 在RF框架中,Myhre等人。 (1998)计算出这种变暖导致对流层顶RF LW(0.05 W m 2);因此,由于SW强迫引起的净RF(0.06 W m 2)约为IRF SW的一半。 对于增加平流层H 2 O的浓度,Forster和Shine(2002)(另见Forster等,2001; Myhre等,2007,2009)发现了Tropapause irf SW,占RF LW的20%。 Etminan等。(1981)选择TOA。这仍然留下一个问题,即哪种观点最有价值,以及它们是否可以和解。Myhre等。 (1998)还发现,RF LW的CO 2(0.11 w m 2)的CO 2为负IRF SW,从278 ppm增加了一倍。 然而,在这里很重要的是,额外的SW吸收温暖了平流层(与仅LW的情况相关)。 在RF框架中,Myhre等人。 (1998)计算出这种变暖导致对流层顶RF LW(0.05 W m 2);因此,由于SW强迫引起的净RF(0.06 W m 2)约为IRF SW的一半。 对于增加平流层H 2 O的浓度,Forster和Shine(2002)(另见Forster等,2001; Myhre等,2007,2009)发现了Tropapause irf SW,占RF LW的20%。 Etminan等。Myhre等。(1998)还发现,RF LW的CO 2(0.11 w m 2)的CO 2为负IRF SW,从278 ppm增加了一倍。然而,在这里很重要的是,额外的SW吸收温暖了平流层(与仅LW的情况相关)。在RF框架中,Myhre等人。(1998)计算出这种变暖导致对流层顶RF LW(0.05 W m 2);因此,由于SW强迫引起的净RF(0.06 W m 2)约为IRF SW的一半。对于增加平流层H 2 O的浓度,Forster和Shine(2002)(另见Forster等,2001; Myhre等,2007,2009)发现了Tropapause irf SW,占RF LW的20%。Etminan等。Etminan等。(2016)提出了甲烷的IRF SW计算; Tropopause IRF SW(750 - 1800 PPB扰动)为正,占总强度的6%;考虑平流层变暖的影响
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 4 月 6 日发布。;https://doi.org/10.1101/2022.04.05.486971 doi:bioRxiv preprint