1.引言多光谱图像通常提供互补信息,如可见光波段图像和红外图像(近红外或长波红外)。有强有力的证据表明,融合的多光谱图像提高了解释的可靠性(Rogers & Wood,1990;Essock 等人,2001);而彩色多光谱图像则提高了观察者的表现和反应时间(Toet 等人,1997;Varga,1999;Waxman 等人,1996)。计算机可以自动分析灰度融合图像(用于目标识别);而彩色图像则易于人类用户解释(用于视觉分析)。想象一下,夜间导航任务可以由配备多传感器成像系统的飞机执行。分析组合或合成的多传感器数据将比同时监测多光谱图像(如可见光波段图像(例如,图像增强,ll)、近红外(NlR)图像和红外(lR)图像)更方便、更有效。在本章中,我们将讨论如何使用图像融合和夜视彩色化技术合成多传感器数据,以提高多传感器图像的有效性和实用性。预计这种图像合成方法的成功应用将提高遥感、夜间导航、目标检测和态势感知的性能。这种图像合成方法涉及两种主要技术,即图像融合和夜视彩色化,分别在下面进行回顾。图像融合通过整合互补数据来组合多源图像,以增强各个源图像中明显的信息,并提高解释的可靠性。这样可以得到更准确的数据(Keys et al.,1990)并提高实用性(Rogers & Wood,1990;Essock et al.,1999)。此外,据报道,融合数据提供了更为稳健的操作性能,例如增加了置信度、减少了歧义性、提高了可靠性和改进了分类(Rogers & Wood,1990;Essock et al.,2001)。图像融合的一般框架可以在参考文献(Pohl & Genderen,1998)中找到。在本章中,我们的讨论重点是像素级图像融合。对融合图像质量的定量评估对于客观比较各个融合算法非常重要,它可以测量有用信息的数量和融合图像中引入的伪影数量。
医疗系统中粘合剂的主要应用领域是针结合和注射器组件 - 不锈钢针或插管粘结到玻璃或塑料注射器中。这些针头大量生产,需要大量生产中的快速和可靠的键合。除了其机械键强度外,所使用的粘合剂还必须允许高精度生产和永久连接,并且必须承受各种灭菌方法。Panacol的紫外线治愈的Vitralit®粘合剂完全满足这些要求。vitralit®粘合剂有各种粘度范围,可完全适合针线轮的设计,并填补轮毂和针之间的间隙。轮毂和针的材料也影响粘合剂的选择:许多粘合剂都是紫外线,这需要使用透明和紫外线的材料。对于阻断紫外线(例如聚碳酸酯)的材料,建议使用长波LED可固化的粘合剂。建议用于针头键合的所有Vitralit®粘合剂均为无溶剂和认证的USP IV类和/或ISO 10993用于医疗设备。此外,即使在几个灭菌周期后,也要用所有针键粘合剂测量高针提取力。进行视觉质量检查,还提供了我们的医学级粘合剂的荧光版本。选择粘合剂需要一个匹配的分配系统,以在快速生产环境中可靠,精确地分配。使用BDtronic提供的迷你溶液,无论粘合粘度如何,在微氧范围内的分配都变得容易。随着针线粘合的应用,医疗设备所需的高质量需求证实了Bdtronic的体积分配设备的选择。由于连续的体积分配,分配是无脉冲的,可确保最佳过程速度,可重复性和准确性。最后,紫外线固化设备的选择取决于触发聚合的粘合剂和波长。用于使用Vitralit®产品进行针头键合您可以使用UV-A或可见的LED灯。由于特殊的LED组件和自己优化的电源,HönleLED Powerline LC保证了最快的固化和最短周期时间的高密集型照射。此外,可以在0.01 - 99.99秒的范围内选择辐照时间,因此可以精确地适合过程要求。
《工业创新经济学》第三版经过了彻底的修订和扩充。增加了十个全新的章节,其他章节都经过了广泛的重写,因此从很多方面来说,这本书都堪称是一本新书。进行如此彻底的修订的主要原因当然是二十世纪最后几十年世界经济技术变革的性质和速度。但是,我们进行修订还有四个其他原因。首先,无论是经济学界本身还是广大公众,对创新经济学的兴趣都出现了显著的增长。这反映在 20 世纪 90 年代该领域出现了几本新期刊,研究论文和大量新书也大量出版。而在 20 世纪 70 年代,该领域的出版物相对较少,而现在,要跟上不断扩大的文献是一个真正的问题。事实上,要对所有的文献都进行公正的评价是不可能的,因此,我们特别关注最新的文献评论和参考书目。每部分末尾都附有评论文章、文献综述和主要参考文献的简短列表,书末附有主要参考书目。第二,本书的早期版本被广泛用作大学课程的教科书。我们当然对此表示欢迎,并试图回应众多改进本书的建议和意见。特别是,我们在几个方面扩大了本书的范围,特别是在国际层面。由于我们的许多读者都来自第三世界,我们首次加入了涉及欠发达、国际贸易和全球化的章节。这些构成了本书新的第三部分。第三,我们还加强了本书的历史维度。这对于被广泛视为经济学教科书的这本书来说有些不寻常。然而,这与经济理论的最新发展非常一致,这些理论越来越强调进化变化模型中的路径依赖。此外,这也符合约瑟夫·熊彼特的建议,他比任何其他二十世纪经济学家都更重视创新在经济发展理论中的地位。熊彼特从工业革命开始了他的“商业周期”主要研究,并认为这对于理解他所谓的“连续工业革命”或技术变革的长波至关重要。我们效仿了他的榜样,在第一部分的历史部分增加了一些新章节,涉及工业革命中机械化的兴起、十九世纪末的电气化和二十世纪的大规模生产。
强度对音频源的响度的影响。该装置采用专业玻璃纤维印刷电路板材料制成,并使用最新的全波三端双向可控硅电路。有一个主级控制,以及每个通道的独立灵敏度控制。原始的最低环境光水平控制已重新设计,允许将其用作推子;允许从最大调光。只需转动旋钮即可调暗到零。R.F.I.抑制是该套件由高压汞放电灯组成,现在作为标准配置纳入了完整的组件,并封装在深蓝紫色外灯泡中。这吸收了所有东西,每个套件都附带 D.J.“脉冲闪光”控制。放电产生的可见光,但透射长波紫外线。现成的钻孔滚筒镀锡专业品质玻璃纤维印刷电路板,两个输入的选择允许从高和低进行操作。该装置的性能与荧光灯管定制绕组变压器和全机加工压铸外壳相似。所有玉米功率放大器。最大。功率 I .5101,/ 每型装置在某些迪斯科舞厅中使用,但使用 3 针 Ponents 单独提供。外壳通道为 240V 交流电。灯安装在高强度点灯装置中。完全尺寸 7i 英寸。约 2 英寸组装完成并经过测试。可调节旋转轴承。反射器也是完全可调的,装置可以安装在任何位置并聚焦为完整的组装和接线手册,可在购买套件 23p 时退款,价格:[10.50 加 50p P. & P. S.A.E.尺寸 9 英寸 7 英寸 Sin。E2S 车。已付款。S.A.E.满足所有要求。满足所有询问。询问。白衬衫和连衣裙发出“比白色更白”的光芒。使用我们的特殊荧光涂料在墙壁等处绘制 DABAR ELECTRONIC PRODUCTS 场景,聚焦房间对面的黑光并打开开关。图片像变魔术一样闪闪发光!全套工具包括灯、反射器、控制装置、五种不同颜色荧光涂料的大量样品 98a LICHFIELD STREET, WALSALL, STAFFS WS1 1UZ 和完整说明。WALSALL 34365 价格 L25 车。已付款。S.A.E.所有咨询。该概念由 Rendar 首创,并于 13 年前推向市场。仅可邮购 结构坚固的 SAFEBLOC 安全、快速、牢固地将 2 芯和 3 芯裸端柔性导线连接到电源(仅限交流电)。Safebloc 节省时间。无需安装插头进行测试。没有危险,因为盖子打开时电流无法通过 非常适合在工业和商店、工作台和家庭中进行测试和演示。向当地经销商索要 Safebloc - 也可以直接从制造商处订购。如果通过邮寄订购,请随订单寄现金。价格 E2.60+10p P.EtP。每个特殊批量订单批发和工业价格申请 RENDAR® Rendar Instruments Ltd.,Victoria Road,Burgess Hill,Sussex.Tel.BurgessHill2642
以色列Ness Ziona的检测以及能效 - 2025年2月24日 - 预见的自主权Holdings Ltd.(Nasdaq和Tase:FRSX)(FRSX)(“远见”或“公司”或“公司”),3D感知系统中的领先创新者,宣布nvidia segnition invidia invidia segnion conterge invid invid invid invid invidia serge invid jetsone concontion invid oferin concontion invid jetson orin orin orin orin orin orin orin orin orin orin orin concomention segrine contery。 合作利用了Nvidia Jetson Orin Nano和Nvidia Jetson Agx Orin平台,以增强各个行业的前瞻性3D感知系统的能力,重点关注自动无人机和无人驾驶飞机(UAV)。 NVIDIA JETSON ORIN平台提供了最先进的视觉系统,并根据自动无人机和无人机的独特要求量身定制了最先进的计算能力。 NVIDIA JETSON ORIN NANO经过优化,可用于紧凑,轻巧的无人机和无人机,提供健壮的人工智能(AI)性能(AI)性能和能源效率,同时最小化重量和尺寸。 这些平台在保持高性能的同时减少了功耗,使其非常适合在大规模或远程应用程序中的无人机。 满足了高性能需求,NVIDIA JETSON AGX ORIN每秒提供多达27.5万亿的操作(顶部),实现了实时数据处理,高级障碍物检测以及在复杂和动态环境中的精确地形映射。 通过利用NVIDIA JETSON平台的高级AI和图形处理单元(GPU)功能,前瞻性继续彻底改变了自主无人机和无人机领域,从而为3D感知解决方案提供了新的基准,以确定性能,效率和适应性的新基准。以色列Ness Ziona的检测以及能效 - 2025年2月24日 - 预见的自主权Holdings Ltd.(Nasdaq和Tase:FRSX)(FRSX)(“远见”或“公司”或“公司”),3D感知系统中的领先创新者,宣布nvidia segnition invidia invidia segnion conterge invid invid invid invid invidia serge invid jetsone concontion invid oferin concontion invid jetson orin orin orin orin orin orin orin orin orin orin orin concomention segrine contery。合作利用了Nvidia Jetson Orin Nano和Nvidia Jetson Agx Orin平台,以增强各个行业的前瞻性3D感知系统的能力,重点关注自动无人机和无人驾驶飞机(UAV)。NVIDIA JETSON ORIN平台提供了最先进的视觉系统,并根据自动无人机和无人机的独特要求量身定制了最先进的计算能力。NVIDIA JETSON ORIN NANO经过优化,可用于紧凑,轻巧的无人机和无人机,提供健壮的人工智能(AI)性能(AI)性能和能源效率,同时最小化重量和尺寸。这些平台在保持高性能的同时减少了功耗,使其非常适合在大规模或远程应用程序中的无人机。满足了高性能需求,NVIDIA JETSON AGX ORIN每秒提供多达27.5万亿的操作(顶部),实现了实时数据处理,高级障碍物检测以及在复杂和动态环境中的精确地形映射。通过利用NVIDIA JETSON平台的高级AI和图形处理单元(GPU)功能,前瞻性继续彻底改变了自主无人机和无人机领域,从而为3D感知解决方案提供了新的基准,以确定性能,效率和适应性的新基准。使用可见光和热长波红外摄像机都可以在各种且具有挑战性的条件下,包括弱光环境,浓雾和极端天气情况,实现了全面的环境感知。该技术为需要可靠和
b'B'The分数量子厅(FQH)状态是物质拓扑阶段的一些最佳研究的例子。它们的特征是各种拓扑量,例如准粒子电荷,霍尔电导,霍尔的粘度和边缘理论的手性中心电荷,这从根本上是由电子之间的非平凡相关性引起的。在这些状态下相关性的一种特别用途是\ xe2 \ x80 \ x9cguiding Center \ xe2 \ x80 \ x80 \ x9d静态结构因子\ xc2 \ xaf s(k),在长波长的情况下,在平移和In-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-nimememementscements中是四分之一的Quartic [k)。FQH接地的一个基本特征是,确定此四分之一术语的第四个等级张量满足所谓的\ xe2 \ x80 \ x9Chaldane绑定\ Xe2 \ x80 \ x80 \ x9d [2,3],较低的结合在长波长度的强度下,构成了hall [4 hall sects of Hall ted the the Hall [4 hall [4 hall]的强度。在旋转不变的情况下,当引导中心静态结构因子和霍尔粘度张量的四分之一项都由每个pa-rameter确定时,界限可以表示为两者之间的简单标量不平等。在物理层面上,可以理解为将QH状态与拓扑琐碎的产物状态区分开的相关性最小的存在,即,前者不能绝热地变形到后者。在FQH上进行了许多工作,涉及一类旋转不变的模型波函数(Laughlin [6],Moore-Read [7],Read-Rezayi [8]),与欧几里得的保形场理论有关,并使Haldane结合饱和[9,10]。这些模型状态是属于某些非常特殊模型的汉密尔tonians的最高密度状态(零能量特征态),并且在理解FQHE方面发挥了关键作用。他们非常特殊的功能之一是,它们是\ xe2 \ x80 \ x9cmaxmaximally手性\ xe2 \ x80 \ x9d,因为它们在圆柱形几何形状中仅包含一个与半融合状态相对于一个cut的圆柱状态的贡献。这是\ xe2 \ x80 \ x9cmaximal手性\ xe2 \ x80 \ x9d的非常强烈的条件:最大性手性的较弱版本是,纠缠谱的低较低部分(或同等地,拓扑模式)仅具有一种chirality的贡献。这个较弱的版本通常会被汉密尔顿人的基础状态所满足,而汉密尔顿人的基础状态却远离模型。在本文中,我们解决了一个问题 - 饱和hal -dane结合需要什么条件?我们在附录B中显示,连续旋转不变性是必需的。之所以如此,是因为角动量的波动有助于O(K \ Xe2 \ X84 \ X93)4的静态结构因子4,但对HALL粘度张量不足。对于旋转不变的系统,先前已显示[11 \ xe2 \ x80 \ x93 13],即\ xce \ xbd \ xbd \ xe2 \ x88 \ x92 = p /(2 np \ xe2 \ xe2 \ x88 \ x92 1)jain状态[14]不满意,不满意n> 1,不满足n> 1,不满意 任何一个。这些FQH状态包含旋转不变的基态上方的Spin-2重力激发的两种手势。特别是一些研究支持了后者[9]。这会导致长波长的静态结构因子的相关性比霍尔粘度的大小所需的更大的相关性。但是,尚不清楚是否需要强大的最大性手性或较弱的版本足以使各向同性FQH状态的结合饱和。我们以数值调查了这个问题,并提供了明确的证据,表明弱的最大手性不足。因此,我们期望只有理想的保形块波形饱和haldane结合。我们使用旋转不变的二维Hamilto-Nians在\ xce \ xbd = 1 / 3,1 / 5和2/5的FQH状态的长波长极限中计算静态结构因子。为此,我们在圆周的无限缸[15]上使用密度矩阵重新归一化组,并通过考虑大的l y /\ xe2 \ x84 \ x93来接近2D-LIMIT。我们计算O(K \ Xe2 \ X84 \ X93)的系数\ XC2 \ Xaf S 4)4项在指南中心静态结构因子的长波长膨胀中,并表明它比Haldane绑定的Haldane by by for Haldane by to haldane by to for for for Haldane to for Haldane to for Haldane to for for for f q QH的Haldane Hamiltonians的FQH地面。我们通过分析围绕模型'
[3] Huan Zhao; Linghan Zhu;江西li; Vigneshwaran Chandrasekaran;乔恩·凯文·鲍德温(Jon Kevin Baldwin);迈克尔·佩特斯(Michael t Pettes); Andrei Piryatinski;李阳;汉·htoon。操纵近红外量子光生成的层间激子。纳米字母。2023,23,11006-11012。[4] Xiangzhi li;安德鲁·琼斯(Andrew C Jones); Junho Choi; Huan Zhao; Vigneshwaran Chandrasekaran;迈克尔·佩特斯(Michael t Pettes); Andrei Piryatinski; ma rta a tschudin;帕特里克·雷瑟(Patrick Reiser);大卫百老汇。在应变工程WSE2/NIPS3异质结构中,接近诱导的手性量子光生产生。自然材料。2023,22,1311-1316。[5] Huan Zhao;迈克尔·佩特斯(Michael t Pettes); Zheng;汉·htoon。位点对照的电信波长单光子发射器在原子上薄的Mote2中。nat Commun。2021,12,6753。[6] Huan Zhao; Beibei Wang; Fanxin Liu;小对Haozhe Wang; Wei Sun Leong;马克·史蒂文斯(Mark J Stevens); Priya Vashishta; aiichiro nakano;庆。流体流有助于范德华材料的确定性折叠。高级功能材料。2020,30,1908691。[7] Tong Wu†; Huan Zhao†; Fanxin Liu; Jing Guo;汉王。设备的机器学习方法 - 基于随机设备设备的玻尔兹曼机器的电路合作。ARXIV预印ARXIV:1905.04431。2019。[8] Shanyuan Niu†; Huan Zhao†; Yucheng Zhou; Huaixun Huyan;博伊恩赵;江宾;斯蒂芬·B·克罗宁(Stephen B Cronin);汉王; Jayakanth Ravichandran。中波和长波红外线二色性二色性二色性在六角形钙钛矿甲状腺素中。材料的化学。2018,30,4897-4901。[9] Shanyuan Niu†;格雷厄姆·乔†; Huan Zhao†; Yucheng Zhou;托马斯·奥维斯(Thomas Orvis); Huaixun Huyan;贾德·萨尔曼(Jad Salman); Krishnamurthy Mahalingam;布列塔尼·乌尔文(Brittany Urwin);江宾·吴(Jiangbin Wu)巨大的光学各向异性在准尺寸晶体中。nat光子学。2018,12,392。[10] Ivan Esqueda; Huan Zhao;汉王。有效的学习和横杆操作,具有原子薄的2-D材料化合物突触。应用物理学杂志。2018,124,152133。[11] Zhipeng Dong; Huan Zhao;唐·迪马齐奥(Don Dimarzio); Myung-Geun Han; Lihua Zhang;杰西·蒂斯(Jesse Tice);汉王; Jing Guo。由2-D材料启用了原子上的CBRAM:缩放行为和性能限制。电子设备上的IEEE交易。2018,65,4160-4166。[12] Huan Zhao; Zhipeng Dong;他天;唐·迪马尔兹(Don Dimarzi); Myung-Geun Han; Lihua Zhang;小对Fanxin Liu;朗山; Shu-Jen Han。原子上薄的femtojoule候选装置。高级材料。2017,29,1703232。[13] Bolin Liao†; Huan Zhao†; Ebrahim Najafi;小对他天;杰西·蒂斯(Jesse Tice);奥斯汀·J·明尼奇(Austin J Minnich);汉王;艾哈迈德·H·泽尔(Ahmed H Zewail)。黑磷中各向异性光载体动力学的时空成像。纳米字母。2017,17,3675-3680。[14] Huan Zhao†; Yuanrui li;道格拉斯·奥尔伯格(Douglas Ohlberg); Wei Shi; Wei Wu;汉王; ping-heng tan。 单层钼二硫化物纳米纤维具有高光学各向异性。 高级光学材料。 2016,4,756-762。 纳米研究。 2015,8,3651-3661。[14] Huan Zhao†; Yuanrui li;道格拉斯·奥尔伯格(Douglas Ohlberg); Wei Shi; Wei Wu;汉王; ping-heng tan。单层钼二硫化物纳米纤维具有高光学各向异性。高级光学材料。2016,4,756-762。纳米研究。2015,8,3651-3661。[15] Huan Zhao†; Jiangbin Wu†;宗宗; qiushi guo;小王;富兰斯Xia;李阳; Pingheng tan;汉王。在各向异性原子上稀薄的鼻鼻中的层间相互作用。[16] Yichen Jia; Huan Zhao; qiushi guo;小王;汉王;冯米亚。可调节的等离子体 - 声子偏振子中的分层石墨烯 - 甲状腺氮化硼异质结构。acs光子学。2015,2,907-912。[17] Huan Zhao; qiushi guo;富兰斯Xia;汉王。 二维材料用于纳米素化的应用。 纳米素化学。 2015,4,128-142。 [18]小王;亚伦·琼斯(Aaron M Jones);凯尔·塞勒(Kyle L Seyler); vy tran; Yichen Jia; Huan Zhao;汉王;李阳; Xiodong Xu;冯米亚。 单层黑磷中高度各向异性和稳健的激子。 纳米技术。 2015,10,517-521。[17] Huan Zhao; qiushi guo;富兰斯Xia;汉王。二维材料用于纳米素化的应用。纳米素化学。2015,4,128-142。[18]小王;亚伦·琼斯(Aaron M Jones);凯尔·塞勒(Kyle L Seyler); vy tran; Yichen Jia; Huan Zhao;汉王;李阳; Xiodong Xu;冯米亚。单层黑磷中高度各向异性和稳健的激子。纳米技术。2015,10,517-521。
物理定律被蚀刻到对称的画布上,定义了动态系统中的不变模式。但是,当对称性破碎时,基本定律也是如此,通常会导致戏剧性的转变。大爆炸是一个很好的例子,在该例子中,高度对称的状态被称为“假真空”,突然过渡到了一个较低的对称性之一,释放了一种通货膨胀的级联,该级联伴随着我们的宇宙。在早期的宇宙中,极端的热量和能量导致所有力融合到一个实体中 - 由最高对称性的统一拉格朗日描述,但理论上的物理学家完全掌握了。随着宇宙的扩展和冷却,这种对称性被打破,将统一的力分成两个不同的组(重力和电核)。随后的冷却导致对称性进一步崩溃,随着电核力量分为强大的核力量和电能力量,标准模型的Lagrangian失去了更多的对称性。最终,在大爆炸之后的一秒钟仅一秒钟,宇宙就足够冷却了,以使统一的电子周力粉碎到电磁力和弱核力量中。在每个阶段,都会发生自发对称性破裂,从而导致物理不变,并出现新的行为。物理学家长期以来一直研究了自发对称性破坏的现象,范围从结晶和相变到诸如Yoichiro Nambu提出的下原子模型等例子,他们在2008年获得了这一概念的诺贝尔物理学奖。新的平衡位置随着箍旋转的速度而出现。结晶发生时,当温度降低时,具有高平均局部对称性的分子的流体会突然过渡,从而在相对位置施加了较低对称的限制并导致有序的晶体结构。即使是固体晶体也可以经历相变,因为一个对称性比另一种对称性在能量上更有利,从而导致其结构变化。在力学中,用参数缓慢进化的潜在函数可以从一个对称开始,并过渡到另一个较低的对称性,可能导致由该功能控制的机械系统的行为不连续变化。在复杂的系统和混乱理论中,当某些参数不断变化时,行为突然的转移很常见,导致分叉 - 对控制参数的持续变化而发生的突然变化。分叉以各种形式出现,每个形式都带有描述性名称,例如干草叉,倍增,霍普夫和折叠分叉。干草叉分叉是一个模范的情况,随着参数的连续变化(水平轴),稳定的固定点变得不稳定,从而产生了两个新的稳定固定点,同时 - 类似于三个衬托的干草叉的形状(超级挑剔的干草店双面双面双面双面双面布置)。可以在简单的机械模型中观察到这种确切的现象,这些模型说明了...当稳定的固定点突然分成多个固定点,一个不稳定,而其他稳定的稳定点时,就会发生对称性破裂。一个简单的机械模型显示此现象是在旋转圆圈上滑动的珠子。该概念也与Coleman-Weinberg的潜力有关。当箍缓慢旋转时,珠子在其底部的平衡周围振荡;但是,随着离心力更快,它会导致珠子摆动到一侧或另一侧,从而产生两个新的稳定固定点。当自旋速率超过临界阈值时,会发生过渡,从而导致自发对称性断裂和干草叉分叉。通过整合角加速度,我们可以获得系统的有效潜力,该系统自然会随着自旋速率的增加而表现出干草叉分叉。当干草叉的底部处于平衡状态时,振荡的固有频率基本平坦,频率为零。以下一定的过渡阈值,扩展加速度表达式揭示了固有频率。随着有效电势会变得更平整,自然振荡频率会降低,直到其在过渡自旋频率下消失为止。要找到这些新频率,请在新的平衡点附近扩展θ,这是一个谐波振荡器,具有角度频率,可以上升以匹配箍的自旋速率。这个过程与经历相变的铁电晶体中的自发对称性破裂相似。自发对称性破坏是一个过程,其中对称态的系统自发过渡到不对称状态。可以在运动方程或拉格朗日表现出对称性的系统中观察到这种现象,但是最低的能量真空溶液没有。当系统塌陷成这些真空溶液之一时,即使整个拉格朗日保留了对称性,对称性也会破坏该真空周围的扰动。自发对称性破坏需要在对称转换(例如翻译或旋转)下保持不变的物理定律。例如,如果在两个不同位置处的测量值具有相同的概率分布,则可观察到的可观察到的转换对称性。在自发的对称性破坏中,这种关系被破坏了,而潜在的物理定律保持对称。相反,当考虑具有不同概率分布的结果时,就会发生显式对称性破坏。缺乏旋转对称性的电场的引入明确打破了旋转对称性。的阶段,例如晶体和磁铁,可以通过自发对称性破坏来描述,但值得注意的例外包括拓扑阶段,例如分数量子霍尔效应。通常,当自发对称性破裂发生时,多个可观察的特性会同时改变。例如,当液体变为固体时,密度,可压缩性,热膨胀系数和比热可能会发生变化。考虑一个向上的圆顶,底部有一个槽。如果将球放在峰值上,则系统在其中心轴旋转下是对称的。但是,球可以通过滚入槽(最低能量点)来自发打破这种对称性。圆顶和球保留了他们的对称性,但是系统不再具有对称性。在理想化的相对论模型中,可以通过说明性标量场理论总结自发对称性破坏。相关的Lagrangian分为动力学和潜在术语:l = ∂μx∂μϕ -V(ϕ)。在这个潜在的术语中,对称性破裂发生。由Jeffrey Goldstone引起的潜力的一个示例由V(ϕ)= -5 | ϕ |^2 + | ϕ |^4给出。对于0和2π之间的任何真实θ,该电位具有由ϕ =√(5/2)E^(iθ)给出的无限数量的最小值(真空状态)。该系统还具有与φ= 0相对应的不稳定真空状态,该状态具有u(1)对称性。系统落入特定的稳定真空状态(构成θ的选择)后,该对称性似乎会丢失或“自发损坏”。该理论的基态打破了对称性,表明无质量的Nambu -Goldstone玻色子,代表了Lagrangian中原始对称性的记忆。[6] [7]对于铁磁材料,空间旋转是不变的。在居里温度下方,磁化点朝着一定方向,使残留的旋转对称性不间断。描述固体的定律在欧几里得组下是不变的,但由于位移和方向顺序参数,自发分解为空间组。一般相对论的洛伦兹对称性被FRW宇宙学模型中的平均4速度场打破了,类似于宇宙微波背景。电动模型在其温度下经历了相变,在该温度下,希格斯字段充当阶参数破坏量规对称性。超导体的集体场ψ可以打破电磁量规对称性。最初在旋转下最初对称的薄塑料杆在屈曲后变为不对称,但通过其旋转模式保留了圆柱对称性的特征,代表Nambu -Goldstone Boson。(1967)。无限平面上的均匀流体层的对称性是由于温度梯度而形成的对流。旋转圆形箍上的珠子最初将保持静止,但是随着旋转速度的增加,它将开始沿特定方向移动,说明了各种物理系统中对称性的自发破坏。在旋转箍的底部,有一个平衡点,重力电势是稳定的。随着箍旋转的速度,这一点变得不稳定,珠子跳到了中心两侧的两个新均衡之一。最初,系统是对称的,但是在传递临界速度之后,珠子沉降到这些新点之一,打破了对称性。两个气球实验表明,当两个气球最初均等地膨胀时,自发对称性破裂,然后随着空气从一个流向另一个气流而放气。在粒子物理学中,量规对称性预测,某些测量值在田间的任何位置都相同。例如,方程可能预测相等的夸克质量。但是,求解这些方程可以产生不同的解决方案,反映出对称性的崩溃。这种现象称为自发对称性破坏(SSB)。早期宇宙的不同区域的对称性可能有所不同,导致拓扑缺陷如域壁和宇宙弦。自发对称性破坏可以通过产生不必要的单脚架来为大统一理论(肠道)带来挑战。手性对称性破坏是SSB影响粒子物理中强相互作用的一个例子。量子染色体动力学的这种特性解释了核子和常见物质中的大部分质量,将光夸克转化为较重的成分。在此过程中,亲尼是近似的Nambu-Goldstone玻色子,其质量比核子的质量轻得多。手性对称性破裂是希格斯机构的原型,这是电动对称性破坏的基础。希格斯机制和自发对称性断裂是错综复杂的,特别是在仪表对称的领域,这实际上代表了描述对称性的冗余。这个概念在理解金属的超导性和粒子物理标准模型中粒子的起源方面起着至关重要的作用。然而,必须注意,由于Elitzur的定理指出,“自发对称性破坏”一词在某种程度上具有误导性。相反,在应用量规固定后,可以以类似于自发对称性破坏的方式破坏全局对称性。区分真实对称性和规格对称性的一个重要结果是,由于量规对称性的自发断裂对量规矢量场的描述,导致无质量的NAMBU-GOLDSTONE玻色子吸收。此过程提供了巨大的矢量场模式,类似于超导体中或在粒子物理学中观察到的媒介模式。在粒子物理的标准模型中,SU(2)×u(1)与电脉力相关的su(2)×u(1)仪表对称性的自发对称性破坏会为各种粒子产生质量,并区分电磁和弱力和弱力。W和Z玻色子是介导弱相互作用的基本颗粒,而光子介导电磁相互作用。在100 GEV以上的能量下,所有这些颗粒的行为都类似。然而,根据温伯格 - 萨拉姆理论,在较低的能量下,这种对称性被损坏,因此光子和巨大的W和z玻璃体出现。此外,费米子始终如一地发展质量。没有自发的对称性破坏,基本粒子相互作用的标准模型必须存在几个颗粒,但是某些粒子(W和Z玻璃体)然后将被预测是无质量的,与观察到的质量相矛盾。为解决这一点,希格斯机制增强了自发对称性破裂,以使这些颗粒质量质量。这也表明存在一个新粒子Higgs Boson,该粒子在2012年被检测到。金属中的超导性用作Higgs现象的凝结物类似物,其中一组电子对电子对自发打破了与光和电磁相关的U(1)量规对称性。动态对称性破坏(DSB)代表一种自发对称性破坏的一种特殊形式,与其理论描述相比,系统的基态具有降低对称性的特性。全局对称性的动态破坏是由于量子校正而不是在经典树级别而发生的一种自发对称性破坏。然而,动态规格对称性破裂更为复杂,不涉及不稳定的希格斯粒子,而是涉及系统的结合状态,提供了促进相变的不稳定场。物理学家Hill和Lindner发表了研究,该研究通过使用由顶式夸克制成的复合粒子探索了标准希格斯机制的替代方法。这个概念是复合HigGS模型的一部分,其中复合粒子充当希格斯玻色子。动态破裂通常与诸如夸克冷凝物等费米子冷凝物有关,而在超导性中,声子促进了对成对结合的电子,从而导致电磁仪表对称性破坏。大多数阶段可以通过自发的对称性破裂来解释,就像在所有翻译或磁体下都不是在特定方向方向取向的磁体的晶体。其他示例包括列液晶和拓扑排序的状态,例如分数量子厅液体。但是,也已知无法通过自发对称性破裂描述的系统,包括拓扑秩和自旋液体。这些状态保留了初始对称性,但具有不同的特征。铁磁性是自发对称性断裂的主要例子,在一定温度下,能量在磁化倒置下保持不变,但随着外部磁场接近零,能量会破裂。自发对称性阶段的特征是阶参数描述了打破所考虑的对称性的数量。这种崩溃不可避免地伴随着与阶参数的缓慢,长波长波动相关的无间隙nambu-goldstone模式,例如晶体中的声子或磁体中的自旋波。在一维系统中,发生对称性破坏。根据Mermin和Wagner的定理的说法,这些无质量的金石模式在恒定的速度下传播,并在有限温度下被热波动破坏。量子波动防止在零温度下的一维系统中大多数类型的连续对称性破裂,除了其顺序参数保守且没有量子波动的铁磁体。其他远程相互作用系统可能会破坏翻译和旋转对称性。对称的哈密顿量导致无限体积极限的手性构型破坏了镜面对称性。自发对称性破坏需要一个具有多种可能结果的系统,在采样时,它们是整体对称的,但在整体上是对称的,但在采样时会产生特定的不对称状态。这种“隐藏的对称性”具有至关重要的形式后果,并且与金石玻色子有关。在具有对称对称组的理论中,当组的一个元素不同而没有指定哪个成员时,就会发生自发对称性破裂。顺序参数概念是物理理论中的关键,其中对称性下的期望值不变表示有序的相位和断裂的对称性。除非涉及希格斯机制,否则这可能会导致无质量的金石玻色子。在1964年,物理学家Yoichiro Nambu和Makoto Kobayashi因其在亚原子物理学和对称性破坏方面的工作而获得了诺贝尔物理奖的一半。他们的发现揭示了强烈的相互作用如何打破对称结构,从而导致粒子(例如夸克和胶子)的产生。研究论文,例如Chen等。(2010)和Kohlstedt等。(2010)和Kohlstedt等。奖项的另一半因发现CP(指控和平等)对称性在薄弱的互动中被授予Toshihide Maskawa。这一发现对我们对粒子物理学的理解有影响,尤其是与希格斯机制有关。对称性破裂是物理学中的一个基本概念,描述了某些对称性如何在不同的物理系统中丢失或扭曲。它已经在各个领域进行了广泛的研究,包括量子力学,冷凝物质物理学和宇宙学。研究人员探索了对称性破坏了各种机制,例如自催化反应,灾难理论,手性对称性破坏和HIGGS机制。这些理论旨在解释对称性如何在不同的情况下破裂或扭曲,从而阐明了自然的基本定律。近年来,研究人员继续探索对称破坏的概念,并研究了诸如大统一理论,量规重力理论和宇宙弦之类的主题。对对称性破裂的研究仍然是研究的活跃领域,其驱动到其潜力揭示了对宇宙基础结构的新见解的潜力。在包括物理学在内的各个科学社区中,已经对自发对称性破坏的概念进行了广泛的研究。(2007)分别探讨了其对量子纠缠和手性的影响。诺贝尔物理学奖2008颁发给对该领域做出重大贡献的研究人员。史蒂文·温伯格(Steven Weinberg)等学者在诸如Cern Courier等出版物中的意义反映了其重要性。Englert-Brout-Higgs-Guralnik-Hagen-Kibble机制是自发对称性破坏的基本概念,该概念是Guralnik等人最初引入的。该理论已被广泛应用于量规理论,并且是众多研究的主题,包括在《国际现代物理学杂志》中发表的A.自发对称性破坏对我们对宇宙的理解具有深远的影响,其研究仍然是一个积极的研究领域。