目前对可降解亚胺基聚合物半导体分子设计原理的理解仅限于半结晶聚合物形态。在此,我们设计并合成了一类基于吲哚并二噻吩 (IDT) 单元的新型可降解纳米晶体半导体聚合物,所用方法比常用的 Stille 缩聚反应毒性更小。由于可降解 IDT 基聚合物薄膜缺乏长程有序性,我们表明,在保持与可降解半结晶二酮吡咯并吡咯 (DPP) 基对应物相似的电子性能的同时,可以实现增强的拉伸性。通过紫外-可见光谱、凝胶渗透色谱、核磁共振光谱和石英晶体微天平进行的降解研究表明,IDT 基聚合物的降解速度比半结晶 DPP 基聚合物快几个数量级(在溶液中数小时内,在薄膜中一周内)。此外,与半结晶 DPP 基聚合物相比,IDT 基聚合物可以在更温和的酸性条件(0.1 M HCl)下降解,这类似于人体内的酸性环境,并且允许从合成到降解的条件更加环保。我们的工作加强了我们对聚合物半导体结构-降解特性关系的理解,并为可触发、按需降解的瞬态电子器件铺平了道路。
I. 单晶:整个体积的长程有序。单晶或单晶固体是一种整个样品的晶格连续且不间断到样品边缘的材料,没有晶粒边界。(例如石英)。II. 多晶:晶粒内长程有序,但取向不同。多晶材料或多晶体是由许多大小和取向各异的微晶组成的固体。大多数无机固体都是多晶的,包括所有常见金属、许多陶瓷、岩石和冰。III. 几乎所有常见金属和许多陶瓷都是多晶的。IV. 如果存在短程有序,则为无定形。(例如玻璃)。在凝聚态物理学和材料科学中,无定形或非晶态固体是缺乏晶体特有的长程有序的固体。
大脑活动由振荡和宽带心律失常成分组成;然而,在运动研究中,人们更多地关注振荡感觉运动节律,而宽带心律失常脑电图 (EEG) 的时间动态仍未被探索。我们之前已经证明,宽带心律失常脑电图包含短距离和长距离时间相关性,这些相关性在运动过程中会发生显著变化。在本研究中,我们以之前的工作为基础,更深入地了解宽带脑电图中长距离时间相关性 (LRTC) 的这些变化,并将它们与文献中常见的众所周知的 alpha 振荡幅度 LRTC 进行对比。我们使用两个独立的 EEG 数据集(这两个数据集以两种不同的范式记录)来调查和验证五种不同类型的运动和运动想象任务期间 LRTC 的变化——我们的手指敲击数据集(包含单次自我发起的异步手指敲击)和公开可用的 EEG 数据集(包含提示的拳头和脚的连续运动和运动想象)。我们通过对单次试验 2 秒 EEG 滑动窗口进行去趋势波动分析,量化了宽带 LRTC 的瞬时变化。与静息状态相比,宽带 LRTC 在所有运动任务中均显著增加(p < 0.05)。相反,必须在较长的拼接 EEG 段上计算的 alpha 振荡 LRTC 显著下降(p < 0.05),与文献一致。这表明在运动和运动想象过程中,潜在的快速和慢速神经元无标度动力学是互补的。单次试验宽带 LRTC 在所有运动执行和想象任务中均具有较高的平均二元分类准确率,范围为 70.54 ± 10.03 % 至 76.07 ± 6.40 %,因此可用于脑机接口 (BCI)。因此,我们证明了新型运动神经相关性单次试验宽带 LRTC 在单个异步和提示连续运动-BCI 范式中的不同运动执行和想象任务中的普遍性、稳健性和可重复性,以及它与 LRTC 在 alpha 振荡幅度方面的对比行为。
量子计算机和模拟器可能比经典计算机和模拟器具有显著的优势,它们可以洞悉量子多体系统,并可能提高解决优化和可满足性等指数级难题的性能。在这里,我们报告了使用模拟量子模拟器实现的低深度量子近似优化算法 (QAOA)。我们估计具有可调范围的长程相互作用的横向场伊辛模型的基态能量,并通过对 QAOA 输出进行高保真、单次、单独量子比特测量采样来优化相应的组合经典问题。我们通过穷举搜索和变分参数的闭环优化来执行算法,用最多 40 个捕获离子量子比特来近似基态能量。我们使用随系统大小多项式缩放的引导启发式方法对实验进行基准测试。我们观察到,与数值结果一致,随着系统规模的扩大,QAOA 性能不会显著下降,并且运行时间与量子比特的数量基本无关。最后,我们对系统中发生的错误进行了全面分析,这是将 QAOA 应用于更一般的问题实例的关键一步。
摘要 目的。本研究的目的是通过机器学习方法识别受试者之间共享的相位耦合模式,该方法利用来自工作记忆 (WM) 任务的源空间脑磁图 (MEG) 相位耦合数据。事实上,神经振荡的相位耦合被认为是远距离大脑区域之间通信的关键因素,因此在执行认知任务(包括 WM)时至关重要。以前研究认知任务期间相位耦合的研究通常集中在几个先验选择的大脑区域或特定频带上,并且已经认识到需要数据驱动的方法。机器学习技术已成为分析神经成像数据的宝贵工具,因为它们可以捕捉多元信号分布中的细粒度差异。在这里,我们期望这些应用于 MEG 相位耦合的技术可以揭示个体之间共享的 WM 相关过程。方法。我们分析了作为人类连接组项目的一部分收集的 WM 数据。当受试者 (n = 83) 在两种不同条件下执行 N -back WM 任务时收集 MEG 数据,即 2-back(WM 条件)和 0-back(控制条件)。我们估计了这两种条件以及 theta、alpha、beta 和 gamma 波段的相位耦合模式(多元相位斜率指数)。然后使用获得的相位耦合数据训练线性支持向量机,以便使用跨受试者交叉验证方法对受试者正在执行的任务条件进行分类。分类是根据来自各个频带的数据和所有频带的组合(多频带)分别进行的。最后,我们通过特征选择概率评估了不同特征(相位耦合)对分类的相对重要性。主要结果。分别根据 theta(62% 准确率)和 alpha 波段(60% 准确率)中的相位耦合模式成功地对 WM 条件和控制条件进行了分类。重要的是,多波段分类表明,不仅在 theta 和 alpha 波段,而且在 gamma 波段中的相位耦合模式也与 WM 处理有关,分类性能的提高 (71%) 证明了这一点。意义。我们的研究使用 MEG 源空间功能连接成功解码了 WM 任务。我们的方法结合了跨主题分类和我们小组最近开发的多维指标,能够检测到个体之间共享的连接模式。换句话说,结果可以推广到新的个体,并允许对与任务相关的相位耦合模式进行有意义的解释。
● 灵活、高价值的系列飞机由两架互补的飞机组成,即 A350-900 和 A350-1000,具有高度的通用性(95% 的通用部件号)和相同的型号等级。 ● A350-900 是一个单一且最佳的平台,从短程到超长程飞行,提供无与伦比的运营灵活性和效率。 ● A350-900 超长程 (ULR) 是 A350 系列的最新型号。A350-900ULR 能够不间断飞行 9,700 海里(18,000 公里),是当今所有在役商用客机中航程最长的飞机。
● 灵活、高价值的系列飞机由两架互补的飞机 A350-900 和 A350-1000 组成,具有高度的通用性(95% 的通用部件号)和相同的型号等级。 ● A350-900 是一个单一且最佳的平台,从短程到超长程运营,它都具有无与伦比的运营灵活性和效率。 ● A350-900 超长程 (ULR) 是 A350 系列的最新型号。A350-900ULR 能够不间断飞行 9,700 海里(18,000 公里),是当今服役的任何商用客机中航程最长的。 ● A350F 为载重量高达 1011 吨的大型货机市场带来了最新一代的效率和选择。它是唯一能够满足最新 ICAO 要求的货机(特定的 A350F 事实与数据)。
● 灵活、高价值的 A350 系列由两款互补的飞机组成,即 A350-900 和 A350-1000,具有高度的通用性(95% 的通用部件号)和相同的型号等级。 ● A350-900 是一个单一且最佳的平台,从短程到超长程运营,都具有无与伦比的运营灵活性和效率。 ● A350-900 超长程 (ULR) 是 A350 系列的最新型号。A350-900ULR 可不间断飞行 9,700 海里(18,000 公里),是当今服役的任何商用客机中航程最长的。 ● A350F 为高达 111 吨有效载荷的大型货机市场带来了最新一代的效率和选择。它是唯一能够满足最新 ICAO 要求的货机(特定的 A350F 事实与数据)。
● 灵活、高价值的系列飞机由两架互补的飞机 A350-900 和 A350-1000 组成,具有高度的通用性(95% 的通用部件号)和相同的型号等级。 ● A350-900 是一个单一且最佳的平台,从短程到超长程运营,它都具有无与伦比的运营灵活性和效率。 ● A350-900 超长程 (ULR) 是 A350 系列的最新型号。A350-900ULR 能够不间断飞行 9,700 海里(18,000 公里),是当今服役的任何商用客机中航程最长的。 ● A350F 为载重量高达 111 吨的大型货机市场带来了最新一代的效率和选择。它是唯一能够满足最新 ICAO 要求的货机(具体 A350F 事实与数据)。