最近的许多研究都集中在生物学上可行的监督学习算法变体上。然而,运动皮层中没有老师来指导运动神经元,大脑中的学习取决于奖励和惩罚。我们展示了一种生物学上可行的强化学习方案,适用于具有任意层数的深度网络。网络通过选择输出层中的单元来选择动作,并使用反馈连接将信用分配给负责此动作的连续较低层中的单元。做出选择后,网络会得到强化,没有老师来纠正错误。我们展示了新的学习方案——注意力门控大脑传播 (BrainProp)——在数学上等同于错误反向传播,每次针对一个输出单元。我们展示了深度全连接、卷积和局部连接网络在经典和硬图像分类基准(MNIST、CIFAR10、CIFAR100 和 Tiny ImageNet)上的成功学习。 BrainProp 的准确度与标准误差反向传播相当,甚至优于最先进的生物启发式学习方案。此外,学习的反复试验性质与有限的额外训练时间有关,因此 BrainProp 的速度要慢 1-3.5 倍。因此,我们的研究结果为如何在大脑中实施深度学习提供了新的见解。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2020 年 12 月 15 日发布。;https://doi.org/10.1101/2020.12.13.422593 doi:bioRxiv 预印本
在获取外部数据中必不可少的作用,通过这些智能任务(例如推理,学习和决策)可以完成。随着科学和技术的进步,尽管敏感性,设备大小和传感器的检测模式已得到很大改善,但对外部变化做出响应的方法主要是在被动模式下,也就是说,即,收集大量冗余数据,然后将它们传输到远程计算平台,例如云服务器等云服务器,以进一步处理。[2 - 4]随着智能任务的复杂性增加,被动模式会导致时间延迟和数据传输和处理能源消耗过多,并最终拖延了感觉系统的时间和能量效率。解决这些问题的有效方法之一是使用边缘计算能力开发智能的感官系统,通过这些感官系统可以在终端在本地完成收集数据的分析和处理。[3]
随着集成电路规模的不断缩小,静电放电 (ESD) 已成为影响集成电路可靠性的关键因素。[1] 目前,超过三分之一的芯片损坏与 ESD 有关,迫切需要可靠有效的 ESD 防护设计。ESD 防护设计存在许多难点,例如在期望高稳健性和小尺寸的同时满足设计窗口。传统的 ESD 防护器件例如 GGNMOS、二极管、NPN 和 RC 电源钳位通常占用大量的芯片面积。[2] 为了减轻集成电路中每个 I/O 引脚的 ESD 防护对硅片的消耗,可控硅 (SCR) 因其最高的稳健性和最小的尺寸成为各种 ESD 防护器件中最具吸引力的选择。[3] 然而,SCR 固有的再生反馈机制会导致深度回跳和相对较小的保持电压,造成闩锁效应。 [4] 另外,随着保持电压的提高,ESD器件的瞬态功耗必然增大,导致ESD故障电流(It2)急剧下降。因此,在保持足够高的故障电流的同时提高保持电压是极其困难的。人们致力于提高SCR的保持电压。[5-8] 最简单的方案是扩大SCR阳极和阴极之间的距离,[5] 但这种方法效率低,不足以实现闩锁效应。
补充图 1。流式细胞术分析的门控策略。(A)主要外周血淋巴细胞的门控策略。从前向散射面积与侧向散射面积点图中选择淋巴细胞,随后在前向散射面积与前向散射高度点图中选择单个细胞。然后,通过 CD3+ 表达选择 T 细胞,并通过 CD8 vs CD4 点图识别 CD8+ 细胞毒性和 CD4+ 辅助 T 细胞。NK 细胞被识别为 CD3- 和 CD56+ 和/或 CD16+ 淋巴细胞,并在 CD16 vs CD56 点图中选择 CD56 亮 CD16-、CD56 暗 CD16+ 和 CD56-CD16+ 功能亚群。B 细胞被选为 CD3-CD19+ 淋巴细胞。对于浆细胞,先进行前向散射面积与侧向散射面积点图,然后再进行单个细胞选择。然后,将 CD19+ 细胞门控为 B 细胞谱系,将 CD20-CD38 bright 定义为浆细胞。(B)B 谱系主要成熟阶段的门控策略。从 CD19+CD20+ B 细胞开始,选择过渡 B 淋巴细胞作为 CD27-CD10+ 细胞。在侧向散射面积与 CD27 点图中选择了 CD27+ 和 CD27- 细胞。从 CD27- 亚群中,我们在 IgD 与 IgM 图中鉴定了幼稚(IgD+IgM- 或 IgD+IgM+)和 IgD-IgM- 亚群;从 CD27+ 亚群和相同的 IgD 与 IgM 图中,我们鉴定了未切换记忆(IgD+IgM+)、仅 IgM 记忆(IgD-IgM+)和类别切换记忆(IgD-IgM-)亚群。 (C) 循环 Tfh 淋巴细胞的门控策略。通过 CXCR5 和 PD-1 的双阳性染色从 CD4+ T 细胞中筛选出循环 Tfh 淋巴细胞。分析该群体的 CCR7 表达情况。
Marex ECS 将用户便利性与出色的功能和美观性融为一体。其永恒的外观可与任何船舶设计、游艇或工作船完美融合。最先进的 CAN 总线技术用于从最多四个控制站顺利控制单台或双台柴油发动机应用。毋庸置疑,经过验证的质量和最高的生产标准确保了操作的最大可靠性和安全性。经过简单的启动程序后,Marex ECS 即可投入使用。可选择调整控制功能以实现温和操作,以保护发动机和变速箱。借助集成的 WiFi,可以轻松在智能手机、平板电脑或笔记本电脑上进行调整。
Marex ECS 将用户便利性与出色的功能和美观性融为一体。其永恒的外观可与任何船舶设计、游艇或工作船完美融合。最先进的 CAN 总线技术用于从最多四个控制站顺利控制单台或双台柴油发动机应用。毋庸置疑,经过验证的质量和最高的生产标准确保了操作的最大可靠性和安全性。经过简单的启动程序后,Marex ECS 就可以使用了。可选地,可以调整控制功能以实现温和操作,以保护发动机和变速箱。得益于集成的 WiFi,可以在智能手机、平板电脑或笔记本电脑上轻松进行调整。
本地用户界面 (LUI) 功能 · 本地控制阀门 · 监控阀门位置、目标位置、输入信号、温度、供给和执行器压差 · 引导启动功能 · 可以远程锁定 LUI 以防止未经授权的访问 · 校准:自动/手动、手动线性化、单点校准 · 控制配置:积极、快速、最佳、稳定、最大稳定性 · 控制阀的配置 旋转:阀门顺时针或逆时针旋转以关闭 死角 低截止、截止安全范围(默认 2%) 定位器故障动作、打开/关闭 信号方向:正向/反向作用 执行器类型,双作用/单作用 阀门类型,旋转/线性 语言选择:英语、德语和法语
注意:专业仪器术语在 ANSI/ISA 标准 51.1 - 过程仪器术语中定义。1.不应超过本文件和任何其他适用规范或标准中的压力/温度限制。2.标准 m 3 /小时 - 0 � C 和 1.01325 bar 绝对压力下的标准立方米/小时。Scfh - 60 � F 和 14.7 psia 下的标准立方英尺/小时。3.基于单作用直接继电器的 1.4 bar (20 psig) 值;基于双作用继电器的 5.5 bar (80 psig) 值。4.温度限制因危险区域批准而异。氟硅橡胶的 CUTR Ex d 认证的最低温度限制为 -53 � C (-63.4 � F)。5.不适用于行程小于 19 毫米 (0.75 英寸) 或轴旋转小于 60 度的情况。也不适用于长行程应用中的数字阀门控制器。6.M20 电气连接仅适用于 ATEX 认证。7.当使用高达 3.7 bar (53 psi) 的天然气供应,温度为 16 � C (60 � F) 时,带有低排放继电器选项的 DVC6200 可以满足 6 scfh 的 Quad O 稳态消耗要求。8.基座单元和反馈单元之间的连接需要 4 芯屏蔽电缆,最小线径为 18 至 22 AWG,位于刚性或柔性金属导管中。9.4-20 mA 输出,隔离;电源电压:8-30 VDC;参考精度:行程范围的 1%。10.位置变送器符合 NAMUR NE43 的要求;可选择显示故障低 (< 3.6 mA) 或故障高 (> 22.5 mA)。仅在定位器通电时才显示故障高。11.一个隔离开关,可在整个校准行程范围内配置或由设备警报启动;关闭状态:0 mA(标称);开启状态:高达 1 A;电源电压:最大 30 VDC;参考精度:行程范围的 2%。
问题:Spartan Light Metal Products 需要生产一种新的格栅开口加固部件,但自 2005 年以来就没有生产过结构镁部件。该部件的浇口第一次就必须正确,因为产品发布只允许一周的时间来生产优质部件,没有时间提供额外的样品。此外,计算出的填充时间太短,以至于工厂中最大的压铸机的射出量会达到最大值,这意味着强力操作不是一种选择。如果填充时间和更新的浇口方程失败,他们将在发布过程中面临漫长而艰难的道路。