摘要:虽然物联网技术使工业、城市和家庭变得更加智能,但它也为安全风险打开了大门。有了合适的设备和对设备的物理访问,攻击者可以利用旁道信息(如时序、功耗或电磁辐射)来破坏加密操作并提取密钥。这项工作对椭圆曲线标量乘法运算的加密硬件加速器进行了旁道分析,该加速器在现场可编程门阵列和专用集成电路中实现。所提出的框架包括使用最先进的统计水平攻击进行初始密钥提取,然后是正则化的人工神经网络,它将水平攻击中部分错误的密钥猜测作为输入并迭代地纠正它们。通过应用迭代学习,水平攻击的初始正确率(以正确提取的密钥位的分数来衡量)从 75% 提高到 98%。
摘要在当今快速的技术进步时代,卷积神经网络(CNN)在许多领域都表现出了卓越的表现。作为深度学习的关键组成部分,CNN已被证明在各种应用程序中都非常有效。由于计算和存储要求,在现场可编程门阵列(FPGA)上部署CNN是一项具有挑战性的任务。本文对FPGA上的CNN部署进行了全面的审查,涵盖了CNN的历史并解释了关键层。对FPGA优化方法进行了一项调查,FPGA优化的方法是按类别概述的。对软件部署以及硬件设计进行了优化,以改善FPGA上的计算,进一步解锁了在资源受限设备上部署CNN的潜力。此外,本综述将详细介绍了在功耗限制下的申请示例。总的来说,这篇评论为研究人员提供了重要的参考价值,以了解CNNS架构,探索FPGA加速方法和应用程序前景。
LAW 102 执法系统 3 ETR 399 微电子学和纳米电子学 3 6 CHE 490 可再生能源 3 6 ** 社会科学 6 ETR 495 控制系统 3 6 MGT 310 管理与组织 3 ETR 482 电子系统与技术 4 8 LAW 220 家庭法 3 ETR 461 机器人技术 3 6 ECON 101 经济学概论 3 ETR 490 光通信工程 3 6 LAW 102 执法系统 3 ETR 416 功率转换 3 6 ETR 476 无线电发射与天线设备 4 8 ETR 465 微处理器 4 8 ETR 463 数字微电子学 4 8 科学与技术 9 ETR 472 FPGA 门阵列编程 4 8 MATH 101 微积分 1 3 KU ECTS CMS 115 工程计算机应用 3 大学要求 英语 11 22 MED 315 生命科学 3 大学要求 阿塞拜疆语 8 16 人文科学 6 12 科学技术 9 18 社会科学 6 12 主修课程 88 176
量子计算的一个基本模型是可编程量子门阵列。这是一种量子处理器,由程序状态提供信息,该程序状态会在输入状态上引发相应的量子操作。虽然可编程,但已知该模型的任何有限维设计都是非通用的,这意味着处理器无法完美模拟输入上的任意量子通道。表征模拟的接近程度并找到最佳程序状态在过去 20 年里一直是悬而未决的问题。在这里,我们通过展示寻找最佳程序状态是一个凸优化问题来回答这些问题,该问题可以通过机器学习中常用的半有限规划和基于梯度的方法来解决。我们将这个一般结果应用于不同类型的处理器,从基于量子隐形传态的浅层设计到依赖于基于端口的隐形传态和参数量子电路的更深层方案。
摘要 - 生物学序列比对是一种广泛使用的技术,其中搜索序列数据库以找到与输入查询相似的序列。在这项工作中,我们专注于最受欢迎的本地序列一致性算法;基本的本地对齐搜索工具(BLAST)。这是一个计算密集型操作,并且具有指数增长的数据库,使实时执行变得更加复杂。现场可编程的门阵列(FPGA)提供类似硬件的性能和类似软件的可编程性,使它们成为计算复杂任务的理想选择。本文介绍了FPGA上BLAST的基于内容的可调存储器(CAM)实现,该实现使用并发计算加速了对齐过程。搜索输入查询是在数据库序列中并联执行的,以在一个时钟周期中产生结果。所提出的设计是在Xilinx Virtex-7 FPGA设备XC7VX690TFFG1761上实现的。结果表明,与可用的搜索算法相比,相比之下,可行性和加速性能(149-180 MHz速度)。
摘要 - 基于二进制GOPPA代码的基于代码的密码学是一种有前途的解决方案,用于挫败基于量子计算的攻击。McEliece密码系统是一个基于代码的公钥密码系统,据信它可以抵抗量子攻击。实际上,它可以成功地升至2019年初的第二轮加密标准化竞赛。由于其非常大的钥匙尺寸,已经提出了二进制GOPPA代码的不同变体。然而,研究表明,可以通过注入故障来挫败此类代码,从而导致错误的输出。在这项工作中,我们提出了实施Mceliece密码系统中使用的不同复合场算术单元的反对措施。所提出的架构使用高架和量身定制的签名。我们将这些误差检测签名应用于McEliece密码系统,并执行轨道可编程的门阵列(FPGA)实现,以显示采用提出的方案的可行性。我们基于提议的方法的开销和性能退化,并显示其对受约束嵌入式系统的适用性。
我们展示了如何使用场合可编程的门阵列(FPGA)及其协会的高级合成(HLS)编译器来求解具有不完整市场的异质代理模型,并且汇总了不确定性(Krusell和Smith(Krusell和Smith(1998)))。我们记录了一个单个FPGA传递的加速度与在常规群集中使用69个CPU内核提供的加速度相当。解决模型的1200版的时间从8小时下降到7分钟,说明了结构估计的巨大潜力。我们描述了如何实现多个加速机会(二线,数据级并行性和数据精度),并以为传统的顺序专业人员编写的C/C ++代码的最小修改,然后我们在Amazon Web服务中易于使用FPGA。我们量化了这些加速度的加速和成本。我们的论文是迈向新的,电气工程经济学的第一步,重点是设计经济学的综合加速器,以解决具有挑战性的定量模型。复制代码可在GitHub上获得。
量子计算的历史始于 1982 年,当时诺贝尔奖获得者理查德·费曼 (Richard Feynman) 认为某些量子力学效应无法通过经典计算机有效模拟。这引发了一场争论,关于这些效应(特别是量子力学过程中固有的并行性)是否可以通过构建量子计算机来利用。1985 年至 1993 年间,Deutsch、Bernstein-Vazirani、姚期智等人在一系列论文中提出了量子图灵机和量子门阵列等理论模型,并引入了量子计算的复杂度类和几种可由量子计算机执行的简单算法,从而推进了量子计算的理论基础。1994 年,彼得·肖尔 (Peter Shor) 发表了他的量子计算机因式分解算法,该算法在多项式时间内运行,取得了突破。他的算法依赖于所谓的量子傅里叶变换,我们将在后面介绍。量子算法的另一个例子是 Grover 搜索算法(1996),它可以在 O(√)时间内在大小为 N 的大海捞针中找到一根针
I。在世界各地的研究劳动力中,重量少于100克的引言H和大小的DNA测序仪正在越来越多地使用。尽管这些微型测序仪的读取更长的DNA链的能力而被重视的虽然不如其大型和建立的对应物。 他们的低成本和便携性也是珍贵的优势。 一个框图传达现代微型DNA测序系统的主要部分如图所示 1。 如图所示,在设备的印刷电路板(PCB)上有四个主要芯片:i)传感器阵列将DNA分子转换为电子电流等效物; ii)一个混合信号应用特异性集成电路(ASIC),能够放大,过滤和数字化感应的电子电流; iii)一个轨道可编程的门阵列(FPGA),以控制,缓冲和组织从ASIC出现的采样信号; iv)一种通用的总线(USB)芯片,该芯片在板外传达收集的DNA测量结果[1]。 当前对此类系统的挑战是,现有的微型测序仪目前不包含任何实质性嵌入式计算,因此,对通过底盘的测量值进行了任何生物信息分析。 1显示,对于有关DNA等效电流的任何相关分析,必须将数据发送到某些外部处理资源(例如台式机,笔记本电脑,云等)。虽然不如其大型和建立的对应物。他们的低成本和便携性也是珍贵的优势。一个框图传达现代微型DNA测序系统的主要部分如图1。如图所示,在设备的印刷电路板(PCB)上有四个主要芯片:i)传感器阵列将DNA分子转换为电子电流等效物; ii)一个混合信号应用特异性集成电路(ASIC),能够放大,过滤和数字化感应的电子电流; iii)一个轨道可编程的门阵列(FPGA),以控制,缓冲和组织从ASIC出现的采样信号; iv)一种通用的总线(USB)芯片,该芯片在板外传达收集的DNA测量结果[1]。当前对此类系统的挑战是,现有的微型测序仪目前不包含任何实质性嵌入式计算,因此,对通过底盘的测量值进行了任何生物信息分析。1显示,对于有关DNA等效电流的任何相关分析,必须将数据发送到某些外部处理资源(例如台式机,笔记本电脑,云等)。尽管这种情况并不是在设备齐全的科学实验室进行的研究的主要障碍,但它导致了领域工作的并发症(例如,流行病学研究),可以不存在无线通信
摘要 — 故障安全计算是指在发生故障时恢复到非操作安全状态的计算系统。在本文中,我们研究了电路级技术作为在现场可编程门阵列 (FPGA) 上实现故障安全计算过程的缓解策略。在使用开源工具创建的 FPGA 架构中,评估了故障效应通过 FPGA 基元(包括查找表 (LUT)、可配置逻辑块和开关盒)的传播。分析表明,与等效专用集成电路 (ASIC) 版本的故障安全电路相比,可重构架构中存在更多漏洞,因此需要更复杂的冗余电路网络和检查逻辑。提出了一种经过 ASIC 验证的故障安全监控电路版本,并将其与 FPGA 中的等效电路要求进行了比较。固定布局和布线的故障安全电路设计策略有助于减少可能的故障传播路径数量并简化故障安全故障检测电路设计。介绍并讨论了基于 FPGA 的具有报警功能的故障安全电路结构的优点和局限性,以及模拟和形式分析。