Flash Battery将在Bauma Show上展示其所有者软件“ Flash Data Center 4.0”,这是一种使用人工智能的自动和真实的数据控制系统,该系统将于10月24日至30日在慕尼黑举行。意大利公司是个性化锂电池生产部门的欧洲领导人之一,不满足于参加建筑业中专门针对机械和材料的最大国际活动。的确,Flash Battery将成为“数字化”类别中“ Bauma Innovation Award 2022”的决赛选手之一。这是陪审团唯一选择的意大利公司。Marco权利,总部位于Sant'ililio d'Enza(Reggio d'Emilie)的公司首席执行官,在研究和发展领域中包括30%的员工,其中包括30%的员工,这是一个非常满意的:“这是一个非常满意的,因为这种识别不仅涉及我们的电池质量,而且还关注了所有相关的型号,而且还符合可靠性的效果,并且可以进行可靠性的分析,并且可以进行高级分析,并且是型号的,并且是高级分析的,并且是型号的,并且是高级分析的,并且是对型号的相关性。客户可以在所有自治中衡量和控制的绩效。”结果是,Flash Data Center 4.0是一个根据分析的数据来学习和提高性能的系统。»”的确,Flash Data Center 4.0是使用人工智能的自动且真实的 - 时间数据控制系统;由于容器化体系结构,云系统已集成到虚拟环境中,该架构确保了闪光电池与自动学习和人工智能技术的高级管理所产生的所有电池系统的互连。由于自动学习和人工智能技术的发展,设备制造商和闪光电池的最终客户可以对其真实的电池系统进行高级和预防性分析。“”新的图形界面和用户体验继续进行Marco,以允许最终用户具有一个单一的直观仪表板,其中所有与主要电池指标有关的信息进行了实时分析,例如Life Cycles,Of Fimecles,Offeans of Poldiss of Poldision of Poldision -of Polding -of Comply(SOC),健康状况(健康状况(健康状况),健康状态 - 互联网和互助电池。
摘要:3D NAND闪存作为存储器计算的有力候选者,因其高计算效率而备受关注,其性能优于传统的冯·诺依曼体系结构。为确保3D NAND闪存真正融入存储器芯片的计算中,急需一种具有高密度和大开关电流比的候选者。本文,我们首次报道在双层Si量子点浮栅MOS结构中实现高密度多级存储的3D NAND闪存。最大的电容电压(CV)存储窗口为6.6 V,是单层nc-Si量子点器件的两倍。此外,在10 5 s的保持时间后可以保持5.5 V的稳定存储窗口。在充电过程中观察到明显的电导电压(GV)峰,进一步证实了双层Si量子点可以实现多级存储。此外,采用nc-Si浮栅的3D NAND闪存的开/关比可以达到10 4 ,表现出N型沟道耗尽工作模式的特征。经过10 5 次P/E循环后,存储窗口可以维持在3 V。在+7 V和-7 V偏压下,编程和擦除速度可以达到100 µs。我们将双层Si量子点引入3D NAND浮栅存储器,为实现存储器中的计算提供了一种新途径。
过去十年来,集成电路技术的进步加速了数字信号处理器的发展。此外,数字处理具有更耐噪声的优点。因此,模数转换器可用作模拟信号和数字信号处理系统的接口。无线通信系统不断提高的速度导致对高速、低分辨率模数转换器功率和速度标准的巨大需求。实际上,数字信号的处理、测试和存储变得简单。为了处理模拟信号,我们将其转换为数字信号。模数转换器可用作实现此目的的桥梁。研究人员正在研究 ADC 中的新模型策略,以期在降低功耗的同时提高性能。由于闪存 ADC 设计通常在其他形式的 ADC 中起着重要作用,因此它在所有其他形式的 ADC 中变得越来越重要,包括流水线和多位 sigma delta ADC。
该设备是一个 64 兆位(8,192K 字节)串行闪存,具有先进的写保护机制。该设备通过标准串行外设接口 (SPI) 引脚支持单比特和四比特串行输入和输出命令:串行时钟、芯片选择、串行 DQ 0 (DI) 和 DQ 1 (DO)、DQ 2 (WP#) 和 DQ 3 (HOLD#/RESET#)。支持高达 133MHz 的 SPI 时钟频率,在使用四路输出读取指令时,允许四路输出的等效时钟速率为 532MHz(133MHz x 4)。使用页面编程指令,可以一次对内存进行 1 到 256 个字节的编程。该设备还提供了一种复杂的方法来保护单个块免受错误或恶意编程和擦除操作的影响。通过提供单独保护和取消保护块的能力,系统可以取消保护特定块以修改其内容,同时确保内存阵列的其余块得到安全保护。这在以子程序或模块为基础修补或更新程序代码的应用中非常有用,或者在需要修改数据存储段而又不冒程序代码段被错误修改的风险的应用中非常有用。该设备设计为允许一次执行单个扇区/块或全芯片擦除操作。该设备可以配置为以软件保护模式保护部分内存。该设备可以对每个扇区或块维持至少 100K 次编程/擦除周期。
兼容 JEDEC 嵌入式多媒体卡(eMMC)电气标准(5.1) 数据总线宽度:1bit(默认)、4bit 和 8bit 不支持大扇区大小(4KB) 接口电源:V CCQ(1.70V~1.95V 或 2.7V~3.6V),存储器电源:V CC(2.7V~3.6V) 温度:工作(-25 ℃ ~85 ℃),存储(-40 ℃ ~85 ℃) 用户密度:
我要感谢我的同事 Edivânia Ferreira Silva 和我的同事 Mateus Cortez 帮助我进行解码。感谢芯普微电子给我参加专业布局课程的机会(对我这项工作帮助很大)。特别感谢我的姐姐、母亲、叔叔、阿姨、表兄弟和朋友,他们在整个旅程中一直激励着我。
字节。I/O 引脚用作地址和命令输入以及数据输入/输出的端口。复制回功能允许优化缺陷块管理:当页面编程操作失败时,可以直接在同一阵列部分内的另一页中对数据进行编程,而无需耗时的串行数据插入阶段。缓存编程功能允许在将数据寄存器复制到闪存阵列时将数据插入缓存寄存器。当在内存中写入长文件时,此流水线编程操作可提高程序吞吐量。还实现了缓存读取功能。当必须将连续页面流出时,此功能可以显著提高读取吞吐量。此设备包括额外功能:开机时自动读取。
b。在待机模式中,输出处于高阻抗状态,而不是OE#输入。自动睡眠模式该设备具有自动睡眠模式,可最大程度地减少功耗。当地址总线的状态保持稳定为T ACC + 30N时,设备将自动进入此模式。DC特征表中的 ICC 4显示了当前规范。 使用标准访问时间,当地址更改时,设备将输出新数据。 读取模式,将设备自动设置为读取设备加电或硬件重置后的数组数据。 检索数据不需要命令。 该设备还可以在完成嵌入式程序或嵌入式擦除算法后读取数组数据。 设备接受扇区擦除悬挂命令后,该设备将进入扇区擦除悬挂模式。 系统可以使用标准读取时间读取数组数据,除了它在擦除悬浮扇区中的地址读取,设备会输出状态数据。 在扇区擦除悬挂模式下完成编程操作后,系统可以再次读取数组数据,并具有相同的例外。 有关更多其他信息,请参见“部门擦除暂停/简历命令”。 系统必须发出重置命令,以重新启用DQ5较高或在自动选择模式时读取数组数据的设备。 有关其他详细信息,请参见“重置命令”。 OE#引脚处于逻辑高级别时输出禁用模式(V B IHICC 4显示了当前规范。使用标准访问时间,当地址更改时,设备将输出新数据。读取模式,将设备自动设置为读取设备加电或硬件重置后的数组数据。检索数据不需要命令。该设备还可以在完成嵌入式程序或嵌入式擦除算法后读取数组数据。设备接受扇区擦除悬挂命令后,该设备将进入扇区擦除悬挂模式。系统可以使用标准读取时间读取数组数据,除了它在擦除悬浮扇区中的地址读取,设备会输出状态数据。在扇区擦除悬挂模式下完成编程操作后,系统可以再次读取数组数据,并具有相同的例外。有关更多其他信息,请参见“部门擦除暂停/简历命令”。系统必须发出重置命令,以重新启用DQ5较高或在自动选择模式时读取数组数据的设备。有关其他详细信息,请参见“重置命令”。OE#引脚处于逻辑高级别时输出禁用模式(V B IH
活动功率、待机功率和深度掉电模式当芯片选择 (CS#) 为低时,设备启用并处于活动功率模式。当芯片选择 (CS#) 为高时,设备禁用,但可以保持活动功率模式,直到所有内部周期(编程、擦除和写入状态寄存器)完成。然后设备进入待机功率模式。设备功耗降至 I CC1 。执行特定指令(进入深度掉电模式 (DP) 指令)时进入深度掉电模式。设备功耗进一步降至 I CC2 。设备保持此模式,直到执行另一条特定指令(从深度掉电模式释放、读取设备 ID (RDI) 和软件复位指令)。当设备处于深度掉电模式时,所有其他指令都将被忽略。当设备未处于活动使用状态时,这可以用作额外的软件保护机制,以保护设备免受意外写入、编程或擦除指令的影响。