• Mayze Di, Chief AI Officer - MARKS AND SPENCER • Xiao Wen, Data Chief & AI Officer - PRUDENTIAL • Stefan U. Hoejmose, Dr. Data Chief & AI Officer - ITV • Chafika Chettaoui, PhD, Chief Data & AI Officer - AXA • Detlef Nauck, Head of AI & Data Science Research - BRITISH TELECOM • Sreedhar Sistu, Vice President, AI Offers - SCHNEIDER ELECTRIC • Chrissie Kemp, Chief Data & AI Officer - JLR (Jaguar Land Rover) • Eileen Vidrine, Former Chief Data & Artificial Intelligence Officer - US DEPARTMENT OF THE AIR FORCE, CHIEF DATA & AI OFFICE • Niresh Rajah, Chief Data & AI Officer - DLA PIPER • Tjerrie Smit, Head of Data & AI - NATIONALE-NEDERLANDEN • Claire Mathieu, Head of Data & AI -Suez•AI辅助数据驱动创新实验室负责人Pier Paolo Monticone -JTI(日本烟草国际烟草)•高级分析和人工智能(EU D&A)的主管Dario Morelli - Admiral Group plc•Luiza Pawela•Luiza Pawela,Luiza Pawela,首席数据和AI -AGRICAN -agora -agora sa•Axerea sa sa sa•AxeL axeL
目标:评估单峰和多波LED固化的通用粘合剂的影响,对人牙浆干细胞(HDPSC)的代谢活性和细胞因子释放的影响。另外,分析用不同LED固化的粘合剂的转化程度(DC)。方法:使用三种通用粘合剂制备圆盘(直径为5 mm,厚1毫米):单键Uni Versal(SBU,3 M ESPE),Optibond Universal(OBU,Kerr)和Zipbond Universal(ZBU,SDI)。使用单峰(DeepCure,3 M ESPE)或PolyWave轻射二极管(LED)固化单元(Valo Grand,Ultrapent)将这些圆盘固化40 s。24小时后,将样品放在24孔培养板中,每个培养板含有1 ml培养基24小时。将HDPSC(1.8×10 4)接种在96孔板中,并允许生长24小时。随后,将细胞暴露于提取物(含有粘合剂碟片的培养基)的提取物(培养基)中,再加上24小时。未暴露于提取物的细胞用作对照组。使用MTT分析和通过Magpix评估的细胞因子释放评估线粒体代谢。使用FTIR分析粘合剂的转化程度(n = 5)。通过方差分析的双向和Tukey的测试对结果进行了分析。结果:OBU和ZBU洗脱液在线粒体代谢上导致统计学上显着降低,而不论所用的LED如何,表明它们的细胞毒性。相比之下,SBU并未显着影响MTT结果,类似于对照组。与ZBU相关的细胞因子IL-1,IL-6,IL-10和TNF-α的释放较高。SBU增加了IL-8的释放。OBU不影响细胞因子释放。SBU呈现较高的直流,而OBU和ZBU的DC相似,低于SBU。的意义:总之,通用粘合剂对HDPSC表现出毒性,但毒性程度因粘合剂而异。ZBU与HDPSCS的细胞因子释放量增加有关,尤其是促炎性介质。不同的LED不影响评估粘合剂的细胞毒性。
图2。光子能量(8.5-11 eV)和时间(0-30 ms)在450 K,7500 Torr和[O 2] = 7×10 17 cm -3的CL引入DEE的氧化中的质谱(0-30 ms)。由DEE氧化形成的物种引起的峰通过其M / Z标记。未显示由DEE产生的耗尽的离子峰。星号标记了o 2 +峰是由痕量的残留量高能量辐射电离O 2引起的,这在我们的实验中以很高的浓度存在。匕首标记了m / z 117的虚拟光解诱导的伪影,这不会影响其他峰的测量。
摘要简介:最近,许多领先的全球社会努力促进质子治疗技术,以使其普遍使用。目标是为所有受益于此的癌症患者提供质子疗法,从而提高其整体生活质量。这个共同的目标是全球范围内的辐射肿瘤学家,医学物理学家,放射治疗师和医院主管。引入质子治疗系统,再加上对动量分析系统的调整,具有潜在的临床益处。材料和方法:动量分析系统通常会修改临床质子束的能量,从而影响Bragg峰的形状和位置。Fluka是一种基于蒙特卡洛的软件,用于通过将质子束引导到水幻影中来模拟各种光束设置。分析了所得的bragg峰,并将其与不同设置模拟的峰进行了比较。结果:研究结果表明,在所有潜在的肿瘤深度中,Bragg峰在带有和没有调节剂的质子治疗系统中发生变化。结果表明,对于深肿瘤(例如前列腺(例如前列腺)到Z = 2.6 cm的Z = 31.4 cm的位置,对于脊柱轴肿瘤的位置,仅通过调节调节剂= 5至∆Z调节仪的调节剂深度= 30 cm的能量水平,而无需更改Proton的能量水平。结论:对这些结果的研究可能是潜在的剂量结果,特别是对于有兴趣获得这种质子治疗系统以治疗和管理肿瘤在不同深度的诊所。
最能容纳开发。核心战略政策 DS1(DS 代表发展战略)列出了所谓的“DS1 村庄”——这些地方可以在不损害景观的情况下容纳开发,前提是开发位于定居点“之内或边缘”,而不是分散在整个景观中。住房和就业的目标合乎逻辑地将大多数开发引向白峰和德文特谷的广泛村庄,因为那里有大多数村庄和大多数人。在黑峰和荒原边缘,住房开发仅限于几个荒原边缘的 DS1 村庄。这里的就业主要限于农业和庄园管理。西南峰有一系列非常小的 DS1 村庄分布在整个地区,与白峰和德文特谷相比,人口较少。
单色光或进入特定周期性培养基的物质波显示出尖锐的bragg散射到特定的角度。然而,随机干扰完美的晶格位置会导致布拉格峰之间的弥散散射。随着分散体的增加,弥散散射最终占主导地位,最后,布拉格峰消失了。弥散散射是结构化的,在介质中揭示了相关性。例如,用于在水中X射线散射[1,2],可见光在单分散聚苯乙烯珠的无序堆积中的散射[3,4],这对相关函数具有宽峰,具有特征长度尺度,这又在结构函数中产生宽峰。在无序培养基的研究中,布拉格峰与周期性结构有关[5,6]。但是,没有预期的是,在任何规模上没有完美顺序的随机介质可以产生尖锐的散射角度,但我们在这里报告了这样的情况。对于我们选择的潜力,空间自相关函数具有宽峰,因为原子对相关函数在水中,但散射角度仍然非常清晰。这很令人震惊;下面定义的随机电势中的散射就像是在周期性电势中的布拉格散射,而不是相关液体中的散射。最接近的类似物(尽管不是完美的类似物)是粉末衍射,许多随机定向的微晶被密切包装。下面定义的电势没有这样的“微晶”,但它具有bragg峰。但是,散射的时间演变与Fermi的黄金法则不兼容,如下所述。我们通过检查电势的傅立叶成分来计算散射矩阵元素或等效地来解释这一惊喜。我们考虑以下形式的随机电势
摘要——开发具有窄带和可调光谱灵敏度的高性能多光谱光电探测器具有重要意义,但迄今为止仍然极具挑战性。本文,我们报道了一种 Si Au/n 型 Si/Au 光电探测器,它不仅在紫外线而且在近红外区域都具有可调窄带灵敏度,这与受控电荷收集变窄 (CCN) 机制有关。此外,当偏压从 0.1 变为 -0.1 V 时,该器件的负响应峰可以从 365 nm 轻松调整到 605 nm,正响应峰可以从 938 nm 调制到 970 nm。特别是,当负响应峰和正响应峰分别接近紫外短波长端和近红外长波长端时,半峰全宽分别小至 92 nm 和 117 nm。器件在紫外-可见光和近红外区域的响应极性相反,使得目前的硅光电探测器在未来的多波段光电系统中具有潜在的重要意义。
