Cas9 切割的位置由与 Cas 蛋白结合的短 RNA 分子(称为向导 RNA)决定(图 1)。向导 RNA 与 Cas9 结合后,复合物扫描基因组以查找称为 PAM 的三碱基序列。Cas9 PAM 序列为 5' NGG 3',其中 N 可以是任何碱基。当 Cas9 遇到 PAM 序列时,它会解开 DNA,将其分离成单链。然后,Cas9 使用向导 RNA 来确定是否切割 DNA。向导 RNA 的一端有约 20 个碱基,它们决定了 Cas9 将切割哪个 DNA 序列。如果向导 RNA 中这约 20 个碱基的序列与 DNA 互补,则 Cas9 将切割 DNA 的两条链。如果向导 RNA 与 DNA 不匹配,则复合物将移动到下一个 PAM 位点,双螺旋将重新拉上拉链,变成双链形式。使用 Cas9 作为基因编辑工具的诀窍是,科学家可以定制这个约 20 个碱基的序列,将 Cas9 定位到 DNA 的特定区域,基本上允许他们对 Cas9 的切割位置进行编程。
完整作者列表:库马尔,拉吉;密歇根大学,药学科学系 Mondal,Kunal;爱达荷国家实验室,材料科学与工程;北卡罗来纳州立大学,化学与生物分子工程 Panda,Pritam;乌普萨拉大学物理与天文学系 Kaushik,Ajeet;佛罗里达理工大学,自然科学 Abolhassani,Reza;南丹麦大学 - 松德堡,MCI/NanoSYD Ahuja,Rajeev;乌普萨拉大学,物理学和天文学 Rubahn,Horst-Gunter;南丹麦大学、马兹·克劳森研究所、NanoSYD Mishra、Yogendra;南丹麦大学 - 松德堡校区、NanoSYD、马兹·克劳森研究所
微胶囊允许从药物到香水的货物的控制,运输和释放。鉴于微胶囊和其他核心壳结构的各种行业的兴趣,存在多种制造策略。在这里,我们报告了一种依赖温度响应性微凝胶颗粒,聚(N-异丙基丙烯酰胺)(PNIPAM)的混合物和经历流体流体相分离的聚合物的混合物。在室温下,该混合物分离成富含胶体的(液体)和胶体贫困(气体)流体。通过在临界温度上加热样品,其中微凝胶颗粒会急剧收缩并产生更深刻的颗粒室内电势,富含胶体相的液滴变成类似凝胶的液滴。随着温度降低到室温,这些凝胶胶体颗粒的这些液滴会在液滴中重新和相位分离。这种相分离会导致胶体富含胶体的液滴中的胶体贫穷的液滴,并被连续的胶体贫穷相包围。气体/液体/气体全水乳液仅在大多数内液滴逸出前仅几分钟。但是,核壳液滴的胶壳可以通过添加盐来固化。这种方法使用仅使用水性成分的刺激敏感的微凝胶胶体颗粒组成的壳形成核心壳结构,使其对封装生物材料和制造胶囊的胶囊有吸引力,以响应例如温度,盐浓度或pH的变化。
摘要:单光子来源对于推进量子技术至关重要,可扩展的集成是至关重要的要求。迄今为止,大规模光子结构中单光子源的确定性定位仍然是一个挑战。在这种情况下,胶体量子点(QD),尤其是核心/外壳配置,由于其解决方案的加工性而具有吸引力。但是,传统QD通常很小,约为3至6 nm,这限制了它们在大规模光子设备中的确定性位置和实用性。最大的现有核/壳QD是巨型CDSE/CDS QD的家族,总直径约为20至50 nm。推动超过此尺寸限制,我们使用逐步高温连续注射方法引入了巨大CDSE/CDS QD的合成策略,尺寸范围从30到100 nm。电子显微镜揭示了一个一致的六角形钻石形态,由十二个半极化{101̅1}方面和一个极(0001)刻面组成。我们还确定了破坏壳生长的条件,导致缺陷,岛屿和机械不稳定性,这表明将晶体颗粒生长到100 nm以上。厚CD壳在CDSE核上的逐步生长可以使发射QD的合成长度发光寿命为几微秒,并在室温下抑制眨眼。值得注意的是,具有100个CDS单层的QD具有高单光子发射纯度,二阶光子相关G(2)(0)值低于0.2。我们的发现表明,巨大的核心/壳QD可以有效地发出单个光子,这为需要确定性放置单光子源的量子光子应用铺平了道路。
哺乳动物大脑的功能组织可以被认为是一种分层控制结构,但这种复杂系统是如何在进化过程中出现并在发育过程中构建的仍然是一个谜。在这里,我们通过约束闭包框架来考虑大脑组织,约束闭包被视为生命系统的一般特征,即它们由多个子系统组成,这些子系统在不同的时间尺度上相互约束。我们通过开发一种新的约束闭包形式来实现这一点,这种形式受到先前模型的启发,该模型展示了生命周期内动态如何约束生命周期间动态,并且我们展示了这种相互作用如何推广到多层系统。通过这个模型,我们在两个主要的约束闭包例子——生理调节和视觉定向的背景下考虑大脑组织。我们的分析引起了人们对分层大脑结构在多个时间尺度上自我支撑的能力的关注,包括皮质过程限制皮层下过程进化的能力,以及后者限制皮层系统自我组织和完善的空间的能力。本文是“通过进化论的视角看系统神经科学”专题的一部分。
摘要:胶体量子点 (QD) 是有望应用于光子量子信息技术的单光子源。然而,开发具有胶体材料的实用光子量子装置需要对稳定的单个 QD 发射器进行可扩展的确定性放置。在这项工作中,我们描述了一种利用 QD 尺寸的方法,以便将单个 QD 确定性地定位到大型阵列中,同时保持其光稳定性和单光子发射特性。CdSe/CdS 核/壳 QD 被封装在二氧化硅中,以增加其物理尺寸而不干扰其量子限制发射并增强其光稳定性。然后使用模板辅助自组装将这些巨型 QD 精确定位到有序阵列中,单个 QD 的产率为 75%。我们表明,组装前后的 QD 在室温下表现出反聚束行为,并且它们的光学特性在长时间后保持不变。总之,这种通过二氧化硅壳层自下而上的合成方法和强大的模板辅助自组装提供了一种独特的策略,可以使用胶体量子点作为单光子发射器来生产可扩展的量子光子学平台。关键词:单光子源、纳米光子学、量子点、二氧化硅壳层、确定性定位
https://canaltech.com.br/inovacao/no-futuro-baterias-de-carros-eletricos-podem-ser-feitas-com-cascas-de-tamarindo-190256/ 1/9
农业食品废物是农业综合企业的重要副产品,具有巨大的资源回收和可持续创新潜力。如Matei等人所述。 (2021),这种废物流在各个部门提供了宝贵的机会。 传统上主要用作动物饲料,但最近的研究,例如Caliceti等人的研究。 (2022),已经证明了其在多个行业中的更广泛适用性。 农业食品副产品(如果皮,香菜,种子和叶子)富含生物活性化合物,包括苯酚,花青素,肽和脂肪酸。 这些副产品还包含有价值的纤维和酶,使其非常适合在功能性食品,药品和化妆品中应用(DelRío等,2021)。 生物活性成分和结构元素位置的这种组合将农业食品废物作为一种有前途且多功能的原材料,用于多种工业用途(Atiwesh等,2021)。如Matei等人所述。(2021),这种废物流在各个部门提供了宝贵的机会。传统上主要用作动物饲料,但最近的研究,例如Caliceti等人的研究。(2022),已经证明了其在多个行业中的更广泛适用性。农业食品副产品(如果皮,香菜,种子和叶子)富含生物活性化合物,包括苯酚,花青素,肽和脂肪酸。这些副产品还包含有价值的纤维和酶,使其非常适合在功能性食品,药品和化妆品中应用(DelRío等,2021)。生物活性成分和结构元素位置的这种组合将农业食品废物作为一种有前途且多功能的原材料,用于多种工业用途(Atiwesh等,2021)。
金纳米粒子通常用湿化学还原法生产,而金纳米团簇则通过团簇束沉积制备。尽管块体金是惰性的,但它在纳米晶体形式下具有催化活性。[7] 金团簇是研究最广泛的过渡金属团簇之一,因为它们在微电子、纳米技术和生物医学中有着潜在的应用。[4,8 – 10] 所谓“魔法”尺寸的金纳米粒子可以看作是规则原子晶格平面的堆叠,人们预测它们会特别稳定,尽管 Petkov 等人 [3] 指出,不应忽视失去秩序的可能性,而且金确实已被证明有形成无定形结构的趋势。[11] 值得注意的是,不对称纳米粒子的能量通常与对称的闭壳层纳米粒子相似,这增加了纳米粒子丰富的能量景观。
脑类器官是模拟大脑某些三维 (3D) 细胞结构和功能方面的重要模型。能够记录和刺激电生细胞活动的多电极阵列 (MEA) 为研究脑类器官提供了显著的潜力。然而,传统的 MEA 最初是为单层培养而设计的,记录接触面积有限,仅限于 3D 类器官的底部。受脑电图帽形状的启发,我们开发了用于类器官的微型晶圆集成 MEA 帽。光学透明的外壳由自折叠聚合物小叶和导电聚合物涂层金属电极组成。通过力学模拟指导的微型胶囊聚合物小叶的可调折叠,可以实现对不同大小的类器官进行多功能记录,并且我们验证了对 400 至 600 m 大小的类器官进行长达 4 周的电生理记录以及对谷氨酸刺激的反应的可行性。我们的研究表明,3D 壳 MEA 为高信噪比和 3D 时空脑类器官记录提供了巨大潜力。