脑机接口 (BCI) 是一种突破性的方法,它使患有严重运动障碍的人能够直接交流,绕过传统的神经和肌肉通路。在各种各样的 BCI 技术中,基于脑电图 (EEG) 的系统因其非侵入性、用户友好操作和成本效益而特别受到青睐。最近的进展促进了自适应双向闭环 BCI 的发展,它可以动态调整用户的大脑活动,从而提高神经康复的响应能力和疗效。这些系统支持实时调制和持续反馈,促进与用户的神经和行为反应相一致的个性化治疗干预。通过结合机器学习算法,这些 BCI 优化了用户交互并通过活动依赖性神经可塑性机制促进恢复结果。本文回顾了基于 EEG 的自适应双向闭环 BCI 的当前前景,研究了它们在运动和感觉功能恢复中的应用,以及实际实施中遇到的挑战。研究结果强调了这些技术在显著提高患者生活质量和社交互动方面的潜力,同时也确定了未来研究的关键领域,旨在提高系统的适应性和性能。随着人工智能的不断进步,复杂的 BCI 系统的发展有望改变神经康复并扩大在各个领域的应用。
摘要 - 随着现实世界中的这种技术的增加,对自主驾驶(AD)系统和组件的验证和验证越来越重要。安全性 - 关键场景生成是通过闭环培训来鲁棒性策略的关键方法。然而,场景生成的现有方法依赖于简单的目标,从而导致过度攻击或非反应性的对抗性。为了产生多样化的对抗性但现实的场景,我们提出了印章,即一种方案扰动方法,利用了学分的得分功能和对抗性,类似的人类技能。密封扰动的场景比SOTA基准更现实,从而改善了超过20%以上的真实世界,分布和分布外情景的自我任务成功。为了促进未来的研究,我们发布了我们的代码和工具:https://github.com/cmubig/seal
检测从Terahertz到可见光谱结构域的光脉冲的电场波形提供了平均场波形的完整特征,并具有量子光学的巨大潜力,时间域(包括频率bomb)光谱镜,高谐波,高谐波,高旋转性生成和Attosecond Science,可举几例。可以使用电磁抽样进行场分辨的测量,其中激光脉冲通过与另一个较短持续时间的另一个脉冲的相互作用来表征。测得的脉冲序列必须由相同的脉冲组成,包括其相等的载体 - eNvelope相(CEP)。由于宽带激光增益介质的覆盖率有限,在中红外创建CEP稳定的脉冲序列通常需要非线性频率转换,例如差异频率产生,光学参数放大或光学整流。这些技术以单次通道的几何形状运行,通常会限制效率。在这项工作中,我们展示了对谐振系统(光学参数振荡器(OPO))中产生的脉冲的现场分解分析。由于固有的反馈,该设备在给定的输入功率水平上表现出相对较高的转换效率。通过电磁抽样,我们证明了用CEP稳定的几个周期纤维激光脉冲泵送的亚谐波OPO会产生CEP稳定的中红外输出。完整的振幅和相信息使色散控制直接控制。我们还直接在时间域中直接确认了Opo的外来“翻转”状态,在时域中,连续脉冲的电场具有相反的符号。
旋翼飞机为探索外星环境提供了独特的功能。与诸如漫游者之类的勘探工具相比,旋翼船能够越来越快地到达感兴趣的目的地。此外,它们只需要合适的起飞和降落区,并且可以飞越由于障碍物或粗糙地形而可能无法遍历流浪者可能无法穿越的地形。这些优势激发了火星的创造任务,该任务涉及第一个飞行火星的旋翼飞机[1]。这项任务的成功继续激励未来的任务,例如可能使用直升机来返回火星样本[2]。设计一种在火星氛围环境中运行的首个旋翼飞机,需要进行设计,开发和操作的独特工具。在开发的工具中是Helicat-darts(简单地称为简洁的Helicat),用于旋转动力学建模和仿真。此仿真工具是指导,导航和控制(GNC)算法和软件开发的测试床,并作为分析飞行性能和动态的工具。Helicat在Ingenuity任务的整个生命周期中都使用,包括以下内容:
摘要 - 提出了通过闭环机器学习的低地球轨道(LEO)卫星轨道预测的框架。通过改进地面车辆的导航,与使用简化的一般扰动4(SGP4)Orbit Orbit Expagator相比,使用“非合作” LEO卫星信号来证明该框架的功效,并通过“非合作” LEO卫星信号导航。该框架称为LEO-NNPON(具有机会性导航的NN预测),假定以下三个阶段。(i)LEO卫星第一通过(跟踪):具有其位置提取物测量值的陆地接收器(伪造,载波相位和/或多普勒)从接收到的Leo卫星的信号中,使其能够估算到达的时间。LEO卫星的状态用SGP4传播的两行元素(TLE)数据初始化,随后在卫星可见性期间通过扩展的Kalman滤波器(EKF)估算。(ii)未观察的LEO卫星(预测):在估计的ephemerides上对具有外源输入(NARX)NN的非线性自回归进行了训练,并用于传播Leo卫星的轨道,以期在此期间不观察卫星。(iii)LEO卫星第二通道(导航):配备LEO接收器的地面导航器(例如,车辆),从Leo卫星的下链路信号中提取导航可观察到可观察到的可观察到的可观察到的可观察到的导航器。这些导航可观察物用于以紧密耦合的方式(例如,通过EKF)以紧密耦合的方式帮助导航器安装的惯性测量单元(IMU)。LEO卫星状态是从NN预测的胚层获得的。提出了装有工业级IMU导航4.05 km的地面车辆的实验结果,并提供了来自两个Orbcomm卫星的信号。比较了三个车辆导航框架,所有车辆导航框架都用全球导航卫星系统(GNSS) - 惯性导航系统(INS)位置和速度解决方案进行初始化。 (ii)使用SGP4传播的Leo Esphemerides的Leo-Aided Ins; (iii)与狮子座的狮子座。独立的三维(3-D)位置根平方(RMSE)为1,865 m,而SGP4的Leo Aided INS为175.5 m。 Leo-Nnpon的Leo Aided Ins为18.3 m,证明了拟议框架的功效。
资金已通过苏格兰政府获得批准,以开发一种国家方法,以增加NHS苏格兰在苏格兰的糖尿病CL,以供1型糖尿病患者使用。该团队最初将建立9个月,该服务于2023年10月2日星期一开放。入门计划后,个人将继续他们当地糖尿病团队的持续护理和支持。
在当今的现代生活中,由石化原料制成的塑料由于其多功能性,具有成本效益和耐用性而变得必不可少。人类社会对这些塑料的粗心处理和处置不当会导致由此产生的塑料废物造成的环境污染。可以通过将可生物降解的塑料引入塑料经济中来减少寿命末(EOL)塑料的积累。[1-5]然而,这种策略并未挑战当前的线性经济模型,需要实施循环塑料经济。[6]由于石油的耗竭,需要创建可以通过基于生物的塑料来实现的替代方法。在2022年,全球塑料产量为400.3吨,其中包括机械回收的聚合物的8.9%,仅为生物基和生物成分聚合物的0.5%。[7]
摘要:在一个可持续性和有效资源利用率至关重要的时代,闭环供应链(CLSC)是一种关键方法,尤其是在易腐商品的背景下。产品的易腐性为供应链管理增添了一层复杂性,确定了定位的创新策略,以最大化产品寿命并最大程度地减少废物。这篇全面的评论文章深入研究了在CLSC框架内易腐产品的整合。该研究彻底研究了现有的研究,以识别差距并概述未来的研究方向。它强调了管理易腐产品的独特挑战和复杂性,这是一种至关重要但经常被忽视的可持续供应链实践的组成部分。评论重点介绍了效率和可持续性之间的平衡,强调了后勤和循环经济原则在增强供应链弹性方面的重要性。通过综合各种方法和发现,本文对CLSC中可腐烂的产品管理的现状进行了整体观点,为学术界和行业从业人员提供了宝贵的见解。该研究不仅有助于对CLSC的理论理解,而且还提出了实用方法以进行优化,并与更广泛的可持续性目标保持一致。
为什么在dafne闭环必需品中未包括怀孕的闭环使用?使用闭环在怀孕期间对葡萄糖进行管理需要专业团队的投入,以实现不同的葡萄糖目标和个性化的管理计划。DAFNE闭环必需品的重点是使用闭环而不是个性化专家管理确保安全的基本关键技能。