茂文·钟士的故事 茂文·钟士是一个梦想家、实干家和务实主义者。他是一个精力充沛、性格外向的推销员,业余时间会重读莎士比亚。还有谁比他更适合创立世界上最大的服务俱乐部协会呢? 1958 年,国际狮子会董事会正式任命琼斯为狮子会的创始人——此时距离狮子会首次召开会议已经过去了 40 多年。但无论他的官方头衔是什么,琼斯对狮子会的影响都是深远的。他提供了必要的领导力、组织能力、毅力和力量,为国际狮子会奠定了基础,使之成为今天的样子。 琼斯于 1879 年 1 月 13 日出生于亚利桑那州托马斯堡,那里是美国陆军骑兵的一个偏远哨所,他的父亲是陆军的侦察员。7 岁时,琼斯一家搬到了东部,定居在伊利诺伊州。他天生拥有一副好嗓音,曾考虑从事音乐事业。但他最终成为了一名保险推销员。 1913 年,琼斯在芝加哥成立了自己的保险代理机构。当他加入芝加哥一家名为“商业圈”的商务人士社交午餐俱乐部时,他迅速带头招募新会员,并说服退缩者重新加入。但俱乐部只关注商业,这与琼斯不同且更宏大的愿景有些不符。“如果这些凭借干劲、智慧和雄心获得成功的人,将自己的才能用于改善社区,会怎么样?”琼斯问道。他看到了一种渴望帮助他人的新型俱乐部。作为商业俱乐部秘书,琼斯在妻子——冠军高尔夫球手罗斯·阿曼达·弗里曼的帮助下,给全国各地的俱乐部写了几十封信,邀请他们采纳他成立以服务为中心的组织的想法。有意成为会员的商人在伊利诺伊州芝加哥召开会议,1917 年 6 月 7 日,国际狮子会诞生。同年晚些时候,在德克萨斯州达拉斯举行的狮子会成立大会上,琼斯被选为秘书兼财务主管,他担任了多年的职务。最后,董事会授予琼斯终身秘书长的头衔。琼斯是一位多产的作家,有时观点清晰有力,有时又感情用事。他的笔触出现在狮子会宗旨和道德准则等创始文件中。他为狮子会杂志撰写的专栏至今仍被引用,有助于阐明该组织的原则和价值观。他也喜欢格言。琼斯从不粉饰事实,他的办公室里整齐地挂着一句他最喜欢的格言:“真理和玫瑰都有刺。” 1926 年,琼斯放弃保险业务,成为狮子会事实上的首席执行官和全球亲善大使。他出色地扮演了这两个角色——建立和管理不断扩大的总部业务,并不断出差访问分会和发表演讲。节奏从未停止。
数以千计的科学家为参加在芝加哥举行的 AGU 2022 年秋季会议而穿上厚厚的衣服,我们 Eos 提醒大家“科学引领未来”,未来就是科学。这个未来以过去为依据,以现在为指导,将以个人、社区和联盟的贡献为特征,并具有明确的目标和实现这些目标的实际基准。有效监测北极永久冻土的未来源于过去的冰河时代,正如 20 世纪 90 年代一位美国科学家和俄罗斯研究人员之间建立的不可思议的友谊所阐明的那样。在 Jenessa Duncombe 的最新一期《曲线》(第 38 页)中了解有关西伯利亚、名为 Willy 的猛犸象和后苏联友谊的更多信息。John Aber 和 Scott V. Ollinger 提醒我们,温室气体排放的预测影响在一个世纪内没有太大变化(第 58 页)。他们提供了清晰的、数据驱动的大纲建议,以传达信息。不幸的是,冷战时期对核冲突的恐惧再次浮出水面。在第 27 页,Alan Robock 和 Stewart C. Prager 概述了科学家可以采取的措施,以降低此类冲突的可能性。最后,他们认为,“解决核武器问题的最终方法是在全球范围内禁止核武器。” 在 COVID19 大流行开始时,气溶胶科学家是警告病毒空气传播质量的哨兵。政策制定者和公众对这些研究人员的反应构成了我们今天生活的世界,以及我们正在为未来建设的世界。Richard J. Sima 的“冠状病毒时代的室内空气污染”(第 44 页)是一项关于科学、挫折以及最终希望的研究。早期诊断也是 Matthieu Chartier 的《掠夺性会议的惊人崛起》(第 64 页)的希望。Chartier 提出建议,帮助社区确保更值得信赖、更透明的未来。草根组织正在采取行动,重新定义未来的大学董事会。在第 52 页,Kimberly M. S. Cartier 描述了 Harvard Forward、Penn State Forward 和 Yale Forward 的努力,这些校友团体组织起来选举强大的董事会成员,决定大学如何应对气候变化。“我们是否正在进入气候建模的黄金时代?”(第 30 页)Mark Betancourt 在分析百亿亿次计算和欧盟的 Destination Earth 项目时问道。每秒可进行 1018 次运算的百亿亿次级超级计算机可能会带来革命性的变化(分辨率?)新模型还可以帮助社区制定适应和缓解策略。科学家如何模拟和孪生各种影响地球气候的系统。最后,一组科学家鼓励他们的同行在 Mark A. Parsons、Daniel S. Katz、Madison Langseth、Ham pa puram Ramapriyan 和 Sarah Ramdeen 的观点中给予“应得的荣誉”(第 20 页)。他们认为,围绕学术引用和荣誉的传统协议已经过时,而需要的是“更广泛地设计应得荣誉的地方”。从北极真菌到学术脚注,改变可能是一个缓慢的过程,但我们的社区可以立即实施一些步骤。科学引领未来,未来就在现在。
标签 1 主席的开幕词 上午 10:01,Laura Sykora 宣布会议开始,并要求 Richard Taylor 点名。点名之后,Laura Sykora 对所有人在天气条件极其恶劣以及公共安全工作量巨大的情况下仍能参加会议表示感谢。Sykora 女士为亲自出席的 Greg Foster 加分。 标签 2 上次会议回顾 Dave Corn 解释说,在上次委员会会议上,合规审查流程经过了最后一次审查、最终确定和委员会投票批准。随后,Laura Sykora 将委员会的建议提交给董事会会议,并建议该流程将保持开放 30 天,直到 2 月底的下一次 NC 911 董事会会议。Laura Sykora 随后解释说,董事会的政策是给新标准或流程一段时间,让董事会在对其进行投票之前对其进行考虑和提出问题。标签 3 合规流程图审查 Laura Sykora 解释说,Brandon Zuiderma 要求提供合规审查流程的流程图,以便更好地了解流程的工作原理。Laura 希望将其作为向 PSAP 经理更好地解释审查流程的工具。有人问谁是员工审查员,Laura 回答说是 Tina Bone、David Dodd 和 Dave Corn。Carson Smith 询问工作人员是否会在场。其中一名成员回答说,他们可能会或可能不会,这取决于具体情况。Laura 表示同意。Laura 逐项介绍了三个流程图,解释了该流程。她说完后,Carson Smith 询问 PSAP 是否可以继续每 90 天提交一次纠正行动计划,永无止境。Laura 解释说,PSAP 最多只能提交一份纠正行动计划,最长 90 天。Carson 警长担心,PSAP 可能会因未能提交有效计划而几乎无限期地推迟解决问题。Rodney Cates 同意 Carson Smith 的观点。Richard Taylor 同意 Carson Smith 和 Rodney Cates 的观点。 Brandon Zuiderma 表示,有足够的余地允许执行董事随时行使自由裁量权,不允许 PSAP 拖延行动。Richard Bradford 插话说,情况各不相同,允许执行董事拥有适当的自由裁量权来做出判断。Richard Bradford 概述了几种不同的情况。他认为,由于目前还没有足够的经验来设定确切的日期,更合适的做法是允许执行董事灵活行事。Dave Corn 解释说,他认为合规流程的编写允许执行董事在提交标准委员会之前自行决定最多六个月的时间,以便 PSAP 获得批准的计划。Dave Corn 问道,如果我们对提交给董事会的文件进行任何更改,我们是否必须删除并重新提交该文件,等待 30 天的审议,然后进行投票和预期批准。Richard Bradford 回答说,这取决于更改是否实质性。此外,他建议,所写的内容涵盖了正在讨论的意外事件。他重申,您不能独立阅读这些声明中的任何一个。所有内容必须一起阅读。Laura 询问是否每个人都同意不进行更改,所有人都回答是的。
玛吉·霍普曾经只是丘吉尔的秘书,为了应对她所面临的危险,她接受了间谍、破坏和侦察方面的大量训练。然而,英国情报部门给她的新任务是杀死可能拥有毁灭世界的裂变炸弹的德国物理学家维尔纳·海森堡,这使事情变得复杂。玛吉对这次任务不确定,因为暗杀与她以前经历过的任何事情都不一样。盟军对德国拥有炸弹的信心也值得怀疑。为了收集更多信息,玛吉前往马德里,海森堡计划在那里发表演讲,并会见了忠诚度不明确的法国间谍可可·香奈儿,她为玛吉提供了这次旅行的掩护。一路上,玛吉的个人生活变得错综复杂,尤其是她与约翰·斯特林的恋情,而她母亲参与战争也为她的任务增加了一层复杂性。随着战争的升级,赌注越来越高,玛吉的选择将对她自己和她所爱的人产生深远的影响。随着战争的升温,物理学家玛吉接到了一项震撼人心的任务——为德国运送一枚裂变炸弹。当她思考盟军如何确定纳粹德国的意图时,她的不安感与日俱增。玛吉决心收集更多情报,她前往海森堡演讲的马德里,会见了时装设计师可可·香奈儿,她也有自己的秘密和模糊的忠诚。与此同时,玛吉的母亲透露了与战争的惊人联系,使玛吉的选择受到质疑。1940 年 6 月,回到洛杉矶,维罗妮卡·格雷斯 (Veronica Grace) 探索着一座新城市,她没有意识到这座城市的黑暗面,因为德国纳粹招募当地人进行宣传活动。当联邦调查局 (FBI) 驳回她的担忧时,她与一名反纳粹间谍头子联手,秘密收集证据,却发现阴谋比预想的更加险恶。《母女叛徒间谍》的灵感来自现实生活中的间谍二人组,讲述了一个关于家庭、责任和欺骗的故事,并提出了关于面对恐怖时勇气的问题。1943 年,在洛杉矶,爵士之夜和宣传活动的魅力中,玛吉发现了与她的旧情人约翰·斯特林有关的神秘死亡,引发了一场跨大陆的追捕,她从伦敦被围困的街道到加利福尼亚阳光普照的山丘。在洛杉矶充满分裂的世界里,玛吉·霍普发现自己陷入了秘密和欺骗的网络,她深入研究了 Zoot Suit 骚乱和三K党的邪恶影响。即使她渴望回家,她的任务也是第一位的。当她穿越这片复杂的土地时,她脑海中浮现的是失去爱情的回忆。她的旅程让她发现了真主花园和卡塞剧院等标志性地标背后隐藏的真相,揭示了电影中的一切都不尽如人意。与此同时,1942 年,在伦敦,玛吉·霍普暂停间谍工作,在俄罗斯军队击退斯大林格勒德军的途中拆除炸弹。然而,她自己过去的创伤让她生活在边缘,冒着巨大的风险,与毒瘾作斗争。尽管她想避免卷入另一起犯罪,但她发现自己被卷入了斯特拉迪瓦里小提琴盗窃案的调查,结果发现这起案件与一名针对拒服兵役者的连环杀手交织在一起。随着第二次世界大战的肆虐,玛吉·霍普卷入了一个间谍和欺骗猖獗的世界。由于她了解英国政府的秘密、有计划的入侵、背叛者和被派去送死的特工,她发现自己被孤立在苏格兰基洛克城堡的一个偏远岛屿上。然而,当狱友开始成为谋杀的受害者时,玛吉必须用尽她所有的智慧和技能,不仅要逃脱死亡,还要逃脱连环杀手的魔爪。在巴黎,玛吉为特别行动处做卧底,在一个异常安静的城市里,纳粹军官开着奔驰车四处游荡,纳粹十字记号旗帜装饰着丽兹酒店。她的同父异母妹妹 Elise 在从集中营获救后失踪,而丘吉尔正计划盟军入侵法国,因此 Maggie 必须在这片险恶的土地上寻找 Elise,并揭开 Erica Calvert 对诺曼底的重要研究。当 Maggie Hope 穿越这些复杂的情况时,有一件事始终至关重要:她必须生存下来。在这个惊心动魄的间谍和欺骗故事中,主人公的生活变成了战场,她穿越权力和身份的诡异网络,智胜纳粹情报精英。凭借精湛的间谍和操纵技巧,她开始了一场危险的探索,以发现叛徒、找到失踪的妹妹,并获得诺曼底登陆计划的关键报告。随着她深入这场致命的猫捉老鼠游戏,她发现自己与纳粹最精锐的特工面对面。值得注意的是,这部小说在多个畅销书排行榜上名列前茅:2017 年 8 月 20 日,它在《华盛顿邮报》精装畅销书排行榜上排名第 10 位;2017 年 8 月 27 日,在《纽约时报》精装畅销书排行榜上排名第 14 位;2017 年 8 月 21 日,在《出版商周刊》精装畅销书排行榜上排名第 16 位。“莎拉!此外,该书还获得了 2017 年阿加莎奖最佳历史小说提名。1942 年,在英格兰,随着闪电战继续留下痕迹,城市笼罩在黑暗之中。在这片阴暗的土地上,发生了一系列可怕的谋杀案,令人毛骨悚然地想起了几十年前开膛手杰克的罪行。受害者都有一个共同点:他们正前往温斯顿·丘吉尔担任间谍和破坏者。军情五处意识到需要专家的帮助,于是向特工玛吉·霍普寻求帮助。陷阱已经设下,但一旦凶手瞄准了玛吉,即使是白金汉宫的安全也无法保障她的命运。在这场高风险的间谍游戏中,每一步都可能带来死亡和欺骗,玛吉的足智多谋将受到前所未有的考验。在另一条叙事线索中,我们发现玛吉·霍普 (Maggie Hope) 生活在 1941 年 12 月,当时珍珠港刚刚遭到袭击。玛吉作为温斯顿·丘吉尔的打字员陪同他前往华盛顿特区,当他们被发现被谋杀时,她被卷入了围绕第一夫人助手的谜团中。在职责和谨慎的需要之间左右为难,玛吉利用自己出色的密码破译和间谍技能,解开了可能危及美国对战争支持的阴谋网。作为一名精英间谍和密码破译员,玛吉·霍普穿梭于战火纷飞的欧洲,她的任务是潜入柏林社会最高层,收集关键情报。她的任务是深入纳粹控制的领土,在那里,她必须依靠自己的机智和敏锐的直觉来揭开可能暴露冲突阴暗面的秘密。浸渍利口酒正在席卷调酒界,其独特的风味和多功能性使其成为鸡尾酒中炙手可热的新成分。通过将伏特加和朗姆酒等烈酒与水果、鲜花、草药和香料相结合,浸渍利口酒可以创造出优质的利口酒,可用于制作各种美味的饮品。从清爽的夏季鸡尾酒(如西瓜马提尼)到奢华的冬季美食(如热薄荷巧克力),这本书中总有一款适合您。有超过 30 种注入式饮品可供选择,每种都有自己独特的风味和搭配选择,可能性无穷无尽。无论您是想制作经典鸡尾酒还是尝试新颖的创意,Infused 都能满足您的需求。从浓郁的 Cosmopolitans 到奢华的马提尼,Infused 利口酒的可能性无穷无尽。让我们开始派对吧!本书包含制作您自己的浸渍酒的简单配方,以及展示这些美味成分多功能性的鸡尾酒配方。这本色彩鲜艳的小书提供了关于如何摇晃、搅拌和冷却的提示,是制作您自己的招牌鸡尾酒的终极指南。送独特的东西是一门艺术。这份礼物充满了创意,可以激发送礼者和接受者的灵感。对于压力重重的新娘来说,婚礼禅在婚礼混乱中提供了一片宁静的绿洲。通过将禅宗教义与传统婚礼习俗相结合,本书展示了如何通过一点正念让大日子变得更好。婚礼禅提供了数十条关于保持当下和放下执着的提示,是完美的新娘送礼会礼物。当事情变得疯狂时,这本书为新娘提供了缓解,并为送礼者带来了好运。30 多年来,Peter Max 的艺术一直是美国文化的一部分。他色彩缤纷、宇宙感十足的作品激励了全世界的人们。凭借丰富的作品和多次个人展览,他的艺术获得了国际认可。这次全面的回顾展展出了 350 张全彩图片,其中许多从未发表过,展示了 Max 的生活和事业。Kevin Coyne 的《Domers:在圣母大学的一年》探索了这所大学的经历。Judith Merkle Riley 的小说《蛇园》深入探讨了一个神秘的世界。巴菲会怎么做?Jana Riess 的《吸血鬼杀手作为精神指南》提供了一本独特的指南。简·兰顿 (Jane Langton) 的《神圣灵感:荷马·凯利之谜》探究了一个精神谜团。罗伯特·加里斯 (Robert Garis) 的《追随巴兰钦》探索了一位著名编舞家的生活。艾伦·爱泼斯坦 (Alan Epstein) 的《如何一天比一天更快乐:一年的正念行动》分享了日常智慧。朱迪思·西尔斯 (Judith Sills) 的《超重行李:走出自己的路》帮助读者克服障碍。玛吉·霍普 (Maggie Hope) 的冒险在她最新的历史悬疑小说中继续,她在其中探索了洛杉矶复杂的历史,包括种族主义和骚乱。《好莱坞间谍》是一部生动的小说,揭示了这座城市过去的秘密。《好莱坞间谍》将读者带入了战时好莱坞充满活力但又被玷污的世界,魅力与衰败并存。苏珊·埃利亚·麦克尼尔 (Susan Elia MacNeal) 的《玛吉·霍普》系列的最新一部巧妙地捕捉了 1943 年加利福尼亚的耀眼一面和阴暗面。一位明星的神秘死亡引发了一场争夺国家灵魂的战斗,将玛吉·霍普卷入了错综复杂的阴谋网。凭借一丝不苟的研究和敏锐的洞察力,麦克尼尔深入好莱坞的魅力世界,在那里,明星们的客串演出比比皆是,同时还充斥着当时的险恶气氛。最终,这部作品成为了一部精彩绝伦、令人愉悦的悬疑小说,让读者沉浸在这个逝去时代的魅力、戏剧和黑暗阴谋之中。当玛吉穿行在阳光普照的洛杉矶街道上时,她发现自己卷入了一场在好莱坞精英光鲜外表下争夺真相的战斗。她的目光锁定在一位身穿白色连衣裙和高跟鞋的金发女郎身上,她正在人行道上奔跑。一名男子拔出枪,但在他开枪之前,另一名男子介入,在女子跌倒在地时大喊“停”。当玛吉意识到这只是一个电影场景时,她最初的震惊逐渐被宽慰所取代。她放松紧握的拳头,欣赏着洛杉矶市中心的繁华景象,棕榈树在微风中摇曳,一只鹰在头顶盘旋。当她伸懒腰,感受着阳光照在皮肤上的温暖时,玛吉感到一种重生的感觉,就像桃乐丝在彩色梦境中一样,远离了伦敦灰色、饱受战争蹂躏的街道。她坐下来阅读头条新闻,其中包括美国在太平洋和欧洲取得胜利的消息。尽管盟军取得了进展,但仍然没有胜利的保证,战争仍在继续。玛吉凝视着这座城市,它就像沙漠中的海市蜃楼,悬在幻想与现实之间。当她坐在 Chateau Marmont 的遮阳棚下时,她很感激这片混乱中的绿洲,身边围绕着她的朋友 Sarah,一位芭蕾舞演员,也住在这家著名的酒店。住宿由林肯·柯斯坦提供,他是一位学者、慈善家和芭蕾舞爱好者。在与乔治·巴顿将军共事时,他把 Sarah 介绍给了乔治·巴兰钦。他推荐她出演一部电影,并可能成为他公司的舞蹈演员。Sarah 走到阳台上,她的黑发扎成马尾辫,身穿真丝上衣和亚麻长裤,手拿粉色尖头鞋。在获得由巴兰钦编舞的《星条旗餐厅》中的一个角色后,她独自在洛杉矶待了数周。现在,她赤脚站在阳台上,看起来像一个好莱坞的少女。“早上好,小猫。”玛吉抬起头,微笑着。你好吗?”莎拉回答说:“浮肿,可怜极了。我抽筋了,时机再糟糕不过了。”距离她的表演被拍摄下来只有三天了。玛吉吞咽了口口水。“嗯,你看起来棒极了,”玛吉说。“谢谢你,但据说相机会加重你的负担。”莎拉向玛吉吐露,好莱坞很难熬。她被告知要矫正鼻子、填充乳房、矫正和漂白牙齿,还要减肥。她妥协了,戴上了牙套,但仅此而已。玛吉转过身,看着那双粉色拖鞋被猛地摔在阳台的水泥地上。“可怜的鞋子,它到底做了什么,要遭受这样的命运?”莎拉抱怨道,穿上一只缎面鞋,踮起脚尖。“今天是我第一次单独和巴兰钦先生合作。我希望我的鞋子保持安静。我会把它们打得服服帖帖的,”她说。她抬头看着玛吉,手里拿着拖鞋。“今天对你来说也是个大日子,不是吗?”“如果你说的‘大日子’是指和约翰见面讨论这个案子,那么是的。但我不会称之为‘大日子’。“尽管天气晴朗,她还是感到一阵冰冷的寒意从她的脊柱上传来。“我仍然很难接受这里有棕榈树,”玛吉说。“我很难相信它们是真实的,尤其是它们矗立在那里。看起来物理在这里是选修课。”“但你来自美国!”她回答道。“至少你在那里出生和长大。”“没错,我来自波士顿,”玛吉解释道。“让我告诉你,马萨诸塞州没有棕榈树。”莎拉不明白这些树怎么会这么高,她沮丧地继续捶着鞋子。“这些树实在是太高了,”莎拉一边继续捶着一边嘟囔道。“这太不雅了。”两人都同意这一观察。“我很高兴我们能一起在洛杉矶,”莎拉说。“尽管我对这种不幸的情况感到抱歉。”“不是每个人都能成为电影明星,”玛吉轻声回答道。“不过,当约翰为格洛丽亚的去世而悲伤时,有你在身边一定让他感到安慰,”她问道。“你真的认为她是被谋杀的吗?”玛吉没有答案。“从我读到的内容来看,似乎没有任何谋杀的迹象,”她承认。“不过,我会尽一切可能发现真相。”
我们有一种天真的古典直觉,认为我们最好的理论应该能够告诉我们物理过程的持续时间。受这种简单的古典图景的启发,物理学家们问道,量子粒子穿过经典禁能垒需要多长时间?换句话说,量子隧穿时间的正确表达式是什么?与经典问题不同,这个问题似乎没有一个直接的答案,并在物理学文献中引发了广泛的争论。物理学家提出了各种量子隧穿时间的表达式。一些跟踪隧穿系统的内部特性,而另一些则依赖于隧穿粒子和外部物理系统之间的耦合。一般来说,它们都提供了不同的值——只在某些限制内相一致——并且它们在大多实用的基础上相互权衡。然而,一些作者仍然在谈论,好像有一个明确而独特的表达可以找到,或者至少好像一些提出的表达本质上比其他表达更有意义。许多人认为,这种明显的歧义源于量子力学对待时间的一般方式:将其视为参数,而非算符。其他人则强调了这场争论的解释维度,甚至认为隧穿时间在量子力学的标准解释中毫无意义。然而,这种混乱和歧义只存在于标准的“正统”或“哥本哈根”解释中——所有考虑德布罗意-玻姆“导波”解释传统形式的作者都同意,这种解释为隧穿时间提供了一个清晰明确的表达,其中量子态由受波函数演化引导的物理德布罗意-玻姆粒子组成。这引发了人们的猜测:量子隧穿时间的实验测试是否可以作为传统形式的德布罗意-玻姆理论的实验测试。因此,关于量子隧穿时间的文献现状自然而然地引出了三个物理和哲学问题。首先,关于隧穿时间的困惑是否真的源于量子力学中更普遍的“时间问题”——即时间缺乏算符这一事实?其次,隧穿时间在量子力学的标准解释中真的是一个毫无意义的概念吗?如果是,为什么?最后,原则上,是否可以使用量子隧穿时间的实验测试作为德布罗意-玻姆解释的实验测试?本文旨在依次回答每个问题。自始至终,我都局限于德布罗意-玻姆理论的传统版本,其中隧穿时间是清晰明确的——其他关于导航波程序所依据的本体论的提议,虽然本身就很吸引人,但与我要提出的概念点无关。在本文的前半部分,即第 2 节中,我概述了现有的关于量子隧穿时间的文献。第 2.1 节解释了隧穿时间讨论所基于的物理场景。在第 2.2 节中,我描述了时间在量子力学中的一些特征,并展示了这些特征是如何被用来将量子隧穿时间的混乱归咎于量子力学中更普遍的“时间问题”。在第 2.3 节中,我描述了隧穿时间与量子力学解释之间的联系,并展示了这种联系是如何被用来激发两种主张的:关于标准解释中隧穿时间的意义的主张,以及关于使用隧穿时间作为 Bohmian 计划的“关键”实验测试的可能性的主张。在本文的后半部分,即第 3 节,我提出了自己的分析,为上述三个问题的答案辩护。我首先在隧穿问题和众所周知的双缝实验之间建立了一个类比。我指出,尝试建立特定于传输粒子的隧穿时间类似于尝试确定检测到的粒子是通过双缝的左缝还是右缝(第 3.1 节)。这个简单而有力的类比将构成本文其余部分的概念基础。接下来,将在第 3.2、3.3 和 3.4 节中回答这三个问题。至于围绕量子隧穿时间的明显混乱和模糊性是否可以追溯到量子力学中更普遍的时间问题,我认为“不”:混乱的真正根源是叠加,因此,即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是模糊和有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它与询问粒子是通过双缝实验的左缝还是右缝一样毫无意义(第 3.3 节)。最后,关于是否可能在原则上将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。不可能通过实验测量德布罗意-玻姆理论预测的隧穿时间,就像不可能测量粒子是通过左缝还是右缝而使屏幕上的干涉图案保持完整(第 3.4 节)一样。这些答案并不全是新的。文献中已经暗示了每一个,但它们尚未联系在一起——当它们出现时,它们被插入更长的简短评论中我描述了时间在量子力学中的一些特征,并展示了这些特征是如何被用来将量子隧穿时间的混乱归咎于量子力学中更普遍的“时间问题”。在第 2.3 节中,我描述了隧穿时间与量子力学解释之间的联系,并展示了这种联系是如何被用来激发两种主张的:关于隧穿时间在标准解释中的意义的主张,以及关于使用隧穿时间作为 Bohmian 计划的“关键”实验测试的可能性的主张。在本文的后半部分,即第 3 节,我提出了自己的分析,为上述三个问题的答案辩护。我首先在隧穿问题和众所周知的双缝实验之间建立了一个类比。我表明,尝试建立特定于透射粒子的隧穿时间类似于尝试确定检测到的粒子是通过双缝的左侧通道还是右侧通道(第 3.1 节)。这个简单而有力的类比将构成本文其余部分的概念基础。接下来,我们将在第 3.2、3.3 和 3.4 节中回答这三个问题。至于围绕量子隧穿时间的明显混乱和模糊性是否可以追溯到量子力学中更普遍的时间问题,我认为“不能”:混乱的真正根源是叠加,因此,即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是模糊和有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它的意义不亚于询问粒子是通过双缝实验的左缝还是右缝(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。不可能通过实验测量德布罗意-玻姆理论预测的隧穿时间,就像不可能测量粒子是通过左缝还是右缝而使屏幕上的干涉图样保持完整(第 3.4 节)一样。这些答案并不全是新的。文献中已经暗示了每一个,但它们尚未联系在一起——而且它们确实出现的地方,都是作为简短的评论插入到更长的我描述了时间在量子力学中的一些特征,并展示了这些特征是如何被用来将量子隧穿时间的混乱归咎于量子力学中更普遍的“时间问题”。在第 2.3 节中,我描述了隧穿时间与量子力学解释之间的联系,并展示了这种联系是如何被用来激发两种主张的:关于隧穿时间在标准解释中的意义的主张,以及关于使用隧穿时间作为 Bohmian 计划的“关键”实验测试的可能性的主张。在本文的后半部分,即第 3 节,我提出了自己的分析,为上述三个问题的答案辩护。我首先在隧穿问题和众所周知的双缝实验之间建立了一个类比。我表明,尝试建立特定于透射粒子的隧穿时间类似于尝试确定检测到的粒子是通过双缝的左侧通道还是右侧通道(第 3.1 节)。这个简单而有力的类比将构成本文其余部分的概念基础。接下来,我们将在第 3.2、3.3 和 3.4 节中回答这三个问题。至于围绕量子隧穿时间的明显混乱和模糊性是否可以追溯到量子力学中更普遍的时间问题,我认为“不能”:混乱的真正根源是叠加,因此,即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是模糊和有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它的意义不亚于询问粒子是通过双缝实验的左缝还是右缝(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。不可能通过实验测量德布罗意-玻姆理论预测的隧穿时间,就像不可能测量粒子是通过左缝还是右缝而使屏幕上的干涉图样保持完整(第 3.4 节)一样。这些答案并不全是新的。文献中已经暗示了每一个,但它们尚未联系在一起——而且它们确实出现的地方,都是作为简短的评论插入到更长的并声称可以使用隧穿时间作为 Bohmian 方案的“关键”实验测试。在本文的后半部分,即第 3 节中,我将提出自己的分析,为上述三个问题提供答案。我首先在隧穿问题和众所周知的双缝实验之间建立类比。我表明,尝试建立特定于透射粒子的隧穿时间类似于尝试确定检测到的粒子是通过双缝的左侧通道还是右侧通道(第 3.1 节)。这个简单而有力的类比将构成本文其余部分的概念基础。然后在第 3.2、3.3 和 3.4 节中回答这三个问题。至于围绕量子隧穿时间的明显混乱和模糊性是否可以追溯到量子力学中更普遍的时间问题,我认为“不能”:混乱的真正根源是叠加,因此,即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是模糊和有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它与询问粒子是否穿过双缝实验的左缝或右缝一样毫无意义(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。不可能通过实验测量德布罗意-玻姆理论预测的隧穿时间,就像不可能测量粒子是通过左缝还是右缝而使屏幕上的干涉图样保持完整(第 3.4 节)一样。这些答案并不全是新的。文献中已经暗示了每一个,但它们尚未联系在一起——而且它们确实出现的地方,都是作为简短的评论插入到更长的并声称可以使用隧穿时间作为 Bohmian 方案的“关键”实验测试。在本文的后半部分,即第 3 节中,我将提出自己的分析,为上述三个问题提供答案。我首先在隧穿问题和众所周知的双缝实验之间建立类比。我表明,尝试建立特定于透射粒子的隧穿时间类似于尝试确定检测到的粒子是通过双缝的左侧通道还是右侧通道(第 3.1 节)。这个简单而有力的类比将构成本文其余部分的概念基础。然后在第 3.2、3.3 和 3.4 节中回答这三个问题。至于围绕量子隧穿时间的明显混乱和模糊性是否可以追溯到量子力学中更普遍的时间问题,我认为“不能”:混乱的真正根源是叠加,因此,即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是模糊和有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它与询问粒子是否穿过双缝实验的左缝或右缝一样毫无意义(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。不可能通过实验测量德布罗意-玻姆理论预测的隧穿时间,就像不可能测量粒子是通过左缝还是右缝而使屏幕上的干涉图样保持完整(第 3.4 节)一样。这些答案并不全是新的。文献中已经暗示了每一个,但它们尚未联系在一起——而且它们确实出现的地方,都是作为简短的评论插入到更长的我认为“不”:真正的混乱根源是叠加,因此即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是含糊不清且有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它与询问粒子是通过双缝实验的左缝还是右缝一样毫无意义(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。实验测量德布罗意-玻姆理论预测的隧穿时间是不可能的,就像测量粒子是通过左缝还是右缝而不使屏幕上的干涉图案保持完整一样(第 3.4 节)。这些答案并不都是新的。文献中已经提到过每一个,但它们还没有联系在一起——即使它们出现了,它们也会作为简短的评论插入到更长的我认为“不”:真正的混乱根源是叠加,因此即使时间可以用算符表示,隧穿时间在量子力学的标准解释中也是含糊不清且有争议的(第 3.2 节)。至于隧穿时间在量子力学的标准解释中是否毫无意义:我认为它与询问粒子是通过双缝实验的左缝还是右缝一样毫无意义(第 3.3 节)。最后,至于原则上是否可以将量子隧穿时间用作德布罗意-玻姆解释的实验测试:我旨在提供一个简单的解释,说明为什么这是不可能的。实验测量德布罗意-玻姆理论预测的隧穿时间是不可能的,就像测量粒子是通过左缝还是右缝而不使屏幕上的干涉图案保持完整一样(第 3.4 节)。这些答案并不都是新的。文献中已经提到过每一个,但它们还没有联系在一起——即使它们出现了,它们也会作为简短的评论插入到更长的