我们引入了一种新方法,可以分析确定两个不同空间位置的量子场配置之间的纠缠熵(和相关量),量子场要么是自由的,要么与经典源相互作用。我们展示了如何用二分连续高斯系统描述这种设置。这使我们能够仅根据场的傅里叶空间功率谱推导出纠缠熵、互信息和量子不和谐的明确和精确公式。这与以前的研究形成了鲜明对比,以前的研究主要依赖于数值考虑。为了说明这一点,我们将我们的形式化应用于平坦空间中的无质量场,其中导出的精确表达式仅涉及场粗粒度区域的大小与这些区域之间的距离之比。特别是,我们恢复了一个众所周知的事实,即互信息在远距离处以该比率的四次方衰减,正如之前在数值研究中观察到的那样。我们的方法导致了这个结果的第一次分析推导,以及一个也适用于任意距离的精确公式。最后,我们确定了量子不和谐并发现它完全消失了(除非在涂抹球体上进行粗粒化,在这种情况下它遵循与互信息相同的远距离抑制)。
拓扑,具有良好的扩展特性。消息在网络中的路由由 Tourmalet 芯片完成,并基于 16 位目标节点地址。BSS-2 作为一种混合信号神经形态计算系统,建立在 HICANN-X (HX) 芯片之上,该芯片具有 512 个自适应指数积分和激发 (AdEx) 神经元电路和 512 × 256 = 131 072 个突触 [7]。通过组合神经元电路,每个神经元最多可配置 16 k 个突触输入。实现具有这种神经元的大型网络需要多芯片系统。[1, 3, 10, 12] 最近,BSS-2 系统开发进展到多芯片系统,具有 46 个 HX 芯片,每个芯片通过 8 个 1 Gbit s −1 串行链路连接到 Kintex 7 FPGA。这些系统利用 BSS-1 晶圆模块基础设施,通过将许多芯片放置在与 BSS-1 晶圆完全相同尺寸和引脚配置的大型 PCB 上来模拟全晶圆级实现[13, 15]。我们认为 [16] 中描述的拓扑对于在带宽和网络直径方面互连晶圆模块上的多个 FPGA 是最佳的。图 1 显示了用于测试 BSS-2 EXTOLL 网络的当前实验室设置[7, 14]。它通过连接到 FPGA 的 MGT 端口的 USB 3.0 插头物理连接到 EXTOLL 网络。此外,它仍然连接到以太网网络以用于 FPGA 位文件闪存。该设置包含四个 FPGA 和两个芯片。
4.12如果任何DIC未能根据规定的时间范围内提交数据,则IA/ RLDC应通过从其他替代来源获取此类信息来准备基本网络。替代来源可以是NLDC SCADA/ SEM数据/最新更新的基本案例/最新的TTC-ATC基本案例,适用于相应的计费期。4.13如果缺少网络数据的一部分,则根据可用的数据和/或引用Power System研究中发布的标准,例如CEA传输计划标准。4.14 RLDCs shall furnish the prepared basic network to IA in order to further prepare all India basic network for computation of ISTS charges and losses for each billing period by 12 th day of each month following the billing period 4.15 IA shall prepare the all India basic network and shall be made available to all DICs on 15 th day of each month following the billing period for review and comment, if any, for 2 days, in order to finalize the all India basic network to be used for the计算期的计算。
引言低介电常数材料被开发出来以替代二氧化硅作为层间电介质[1]。这些材料在半导体封装、层间电介质、电子和通信设备领域显示出巨大的应用。该领域的一个潜在问题是电阻-电容延迟、串扰噪声和过度的功率耗散[2,3]。因此,研究人员使用具有更高绝缘性和更低介电常数(≤2.5或超低≤2.0)的材料[4-7]。通常,根据克劳修斯-莫索蒂方程[8],已经设计出各种方法来设计绝缘聚合物材料和具有降低介电常数值的材料。前者是具有低电偶极化学键的材料,例如脂环族基团、氟化基团,或将大摩尔体积的材料,例如氟、苯基和联苯引入*通讯作者。电子邮件:sundusm.sm@gmail.com
摘要 - 超导离子龙门(SIG)项目旨在设计,构建和测试一个离子龙门的弯曲的超导偶极示威磁体(刚度为6.6 Tm)。主示威者磁铁参数是一个4 t的偶极场,该偶尔线生成的圆环孔,直径为80 mm,曲率半径为1.65 m和30°角扇形。该项目插入了CNAO,CERN,INFN和Medaustron之间的Eurosig合作框架中。在这次合作中,SIG的主要目标是对绕线和组装cos-θ线圈的可行性研究,其曲率半径较小。此外,通过构建直接的热示威磁体共享SIG横截面,CERN的平行程序专门用于研究间接冷却问题。这些程序背后的基本思想是检查社区在超导加速器磁铁设计方面的丰富经验是否会导致龙门磁铁域的突破。本文介绍了SIG磁铁概念设计的主要要素,并报告了米兰的Lasa实验室进行的第一次绕组试验,并带有铜虚拟电缆。此外,还讨论了高度弯曲的cosθ线圈的绕,固化和浸渍的可能解决方案。
摘要。NIST Quantum Cryptogra-Phy竞赛中的最终主义者之一是经典的McEliece Cryptosystem。不幸的是,其公共密钥大小代表了实际限制。解决此问题的一种选择是使用不同校正代码的不同家庭。大多数此类尝试都失败了,因为这些密码系统被证明不安全。在本文中,我们建议使用高较小距离距离自偶偶联代码和从中得出的刺穿代码的McEliece类型加密系统。据我们所知,到目前为止,此类代码尚未在基于代码的密码系统中实现。对于80位安全案例,我们构建了长度1 064的最佳自偶代码,据我们所知,该代码以前没有提出。与原始的McEliece密码系统相比,这使我们可以将密钥尺寸降低约38.5%。
应用超导性的创新研究基础设施(IRIS)是一项由意大利大学和研究部长资助的项目,领导层分配给INFN和LASA实验室作为其协调员。该项目目前处于最后阶段,涉及加速器(ESMA)的能源节能,完全高温超导偶极磁铁的设计和构建。该磁铁是由ASG超导体S.P.A.设计的,在INFN LASA团队的支持下。制造将在ASG超导体S.P.A. Genova中进行。此贡献涵盖了偶极子的最终设计及其构建技术,涵盖了电磁,机械和热方面。磁性明智的,使用金属与绝缘绕组技术缠绕12个赛道线圈。整体线圈堆栈(6+6)的长度将近1米,并具有70毫米宽的免费孔,最大中央磁场为10吨。为了缠绕线圈,已经设计和购买了专用的绕组机。可以承受这样的场,即由高强度合金制成的机械结构正在产生。ESMA将是一种传导冷却的无低温磁铁,并将在20 K下运行,从而大大降低了与低温药物相关的成本。
尾脑神经元的适当发展和功能对于维持皮质回路中的激发和抑制(E/I)平衡至关重要。谷氨酸通过N-甲基-D-天冬氨酸受体(NMDARS)有助于皮质间神经元(CIN)发育。nMDAR激活需要甘氨酸或D-丝氨酸的共同激动剂的结合。d-serine(许多成熟前脑突触的共同激动剂)被L丝氨酸的神经酶丝氨酸种族酶(SR)进行了激烈。我们利用本构SR基因敲除(SR - / - )小鼠研究了D-丝氨酸的可用性对前比率皮层(PRL)中CIN和抑制突触发展的影响。我们发现最未成熟的LHX6 + CIN表示SR和强制性的NMDAR亚基NR1。在胚胎第15天,Sr - / - 小鼠在神经节象征中积累了GABA和有丝分裂增殖的增加,而E18 Neofortex中的GAD1 +(谷氨酸脱羧酶67 kDa; gad67)细胞的较少(谷氨酸脱羧酶67 kD67)。LHX6+细胞成长为白蛋白(PV+)和生长抑素(SST+)CINS。在产后日(PND)16 sr - / - 小鼠的PRL中,GAD67+和PV+的GAD67+和PV+显着下降,但SST+ CIN密度却没有显着降低,这与降低的2/3跨膜神经元的抑制性突触后潜能降低有关。这些结果表明,D丝氨酸的可用性对于产前CIN发育和产后皮质回路的成熟至关重要。
囚禁原子离子系统已证明,其状态准备和测量 (SPAM) 不准确性 [1] 以及单量子比特和双量子比特门错误率 [2–4] 是所有量子比特中最低的。基于囚禁离子的完全可编程、少量子比特量子计算机已经建成 [5, 6]。然而,到目前为止,这些系统尚未扩展到大量量子比特,原因包括异常加热 [7–10]、声子模式拥挤 [11]、光子散射 [12, 13],以及传统光学元件的扩展挑战 [14, 15]。最近,有研究表明,通过直接电磁偶极-偶极相互作用耦合的分子离子量子比特可用于量子信息处理 [16]。虽然使用该方法的分子量子比特系统的可扩展性预计不会受到异常加热或声子模式拥挤的限制,但目前分子离子量子比特并不像原子离子量子比特那样容易控制。特别是,分子离子的 SPAM 由于其通常缺乏光学循环跃迁而变得困难,这使得激光照射分子成为问题 [17]。一种方法是通过共捕获的原子离子进行量子逻辑光谱 (QLS) [18–20],这种方法最近也被用于纠缠原子和分子离子 [21]。然而,由于 QLS 需要在运动基态附近冷却,因此技术要求很高,而且激光操控分子离子会导致自发辐射到暗态。这里,我们描述了如何利用离子阱中的偶极-声子耦合将极性分子离子的偶极矩与多离子库仑晶体的声子模式纠缠在一起。这种现象可以用两种方式直观地理解:作为非静止离子所经历的时间相关电场驱动分子电偶极跃迁,或作为时间相关偶极矩驱动离子运动。对于多个离子,振荡发生在库仑晶体的集体模式中,甚至可以使相距很远的偶极子通过共享声子模式发生强烈相互作用。此外,偶极-声子相互作用可以是