1. 完成初次免疫接种,且距离上一次接种间隔不到 10 年:无(不包含在研究中)。 2. 完成初次免疫接种,且距离上一次接种间隔超过 10 年:1 剂加强剂。 3. 未接种过疫苗:完成初次免疫接种,前两剂间隔 1-2 个月,第二剂和第三剂间隔 6-12 个月,随后每 10 年接种一次加强剂。如果在开始研究之前已开始初次免疫接种,则根据标准时间表为患者接种疫苗。 4. 未完成初次免疫接种: 4.1. 如果患者已接种 2 剂,且后者接种时间早于一年以上,则接种 1 剂。 4.2. 如果患者 1 剂接种时间早于一个月以上,则接种 2 剂,间隔六个月。
□ 流感:最新流感疫苗 - 每年(8 月至 6 月) □ COVID 19 疫苗 X2;另需 2023-2024 版本 □ Td/Tdap *** [如果记录不完整或缺少剂量] □ IPV/OPV □ * MMR(如果没有免疫/不完整/延长剂量间隔) □ * * 水痘(如果没有免疫/不完整/延长剂量间隔) □ * ** 甲型肝炎和乙型肝炎(如果没有免疫/不完整/延长剂量间隔)
缺乏症:1)如果年龄在 7-23 个月且使用 Menveo,则至少间隔 3 个月接种 2 剂,第 2 剂在 12 个月后接种;或者 2)如果年龄在 9-23 个月且使用 Menactra,则至少间隔 3 个月接种 2 剂。对于 24 个月及以上未接种疫苗且患有持续性补体成分缺乏症或解剖性或功能性无脾症的儿童,接种任一品牌的 MenACWY;接种 2 剂,间隔 2 个月。如果接种 Menactra,则必须与 PCV13 的最后一剂间隔 4 周。•• 接种适合年龄的脑膜炎球菌结合疫苗系列(品牌必须获得针对 24 个月的许可)
成对轨迹管理 (PTM) 是一种间隔管理 (IM) 概念,利用机载和地面能力在海洋区域实现机载成对间隔能力。PTM 的目标是使用机载监视和工具来管理“等于或大于”的飞机间间隔。由于自动相关监视广播 (ADS-B) 信息的精确性和机载间隔引导的使用,PTM 最小间隔距离将小于控制器可以使用支持海洋操作的当前自动化系统支持的距离。地面工具协助控制器评估交通状况并确定要发布的适当 PTM 许可。航空电子系统提供引导信息,使机组人员能够遵守控制器发布的 PTM 许可。缩短最小距离和空中间隔管理相结合将提高给定高度或空域体积下的飞机运行能力和效率。本文概述了拟议的应用,描述了几个关键场景,对预期的空中和地面设备和程序变化进行了高层讨论,概述了支持 PTM 操作的潜在机组人机界面以及一些初步的 PTM 效益结果。
2 剂 • 第 1 剂和第 2 剂之间的最佳间隔至少为 8 周 • 在某些情况下,可以考虑根据产品说明书将第 1 剂和第 2 剂之间的间隔缩短为 21 天:旅行需要或由于免疫功能低下导致风险增加。 • 最小间隔:需要 21 天才能考虑剂量有效 • 第三剂适用于特定合格人群(有关更多信息,请参阅计划幻灯片)
摘要 对于患有囊性纤维化 (CF) 的成人和大龄儿童,建议延长妥布霉素给药间隔以治疗肺部症状加重,但 5 岁以下患者的数据有限。我们对 2011 年 3 月至 2018 年 9 月期间在我院因肺部症状加重而静脉注射妥布霉素的 5 岁 CF 住院儿童进行了回顾性群体药代动力学 (PK) 分析。研究对象包括肾功能正常且可提供 $1 妥布霉素浓度的儿童。使用 NONMEM,使用妥布霉素治疗前 48 小时的数据,进行非线性混合效应群体 PK 建模。采用蒙特卡洛模拟确定模拟患者中达到已发表治疗目标的患者比例,其给药方案为 10 – 15 mg/kg/天,每日一次。 58 位患者接受了 111 个妥布霉素疗程(范围为 1 – 9/位)。二室模型最能描述数据。年龄、肾小球滤过率和万古霉素合用是妥布霉素清除率的显著协变量。清除率和中心分布容积的典型值分别为 0.252 L/hr/kg^0.75 和 0.308 L/kg。在 0.75% 的模拟受试者中,没有一种每日一次的方案能够同时达到所有预先指定的目标。13 mg/kg/剂量的剂量最能满足预定目标 C max . 25 mg/L 和 AUC 24 80 – 120 mg h/L。根据我们的群体 PK 分析和模拟,每日一次服用妥布霉素无法实现年轻 CF 患者的所有治疗目标。然而,延长间隔给药方案可能对大多数年轻患者达到治疗目标。
CDC 为所有最低年龄和间隔提供了四天的宽限期。在最低年龄或间隔前四天内接种的剂量仍可算作有效剂量。例如,如果一个人在一岁生日前四天接种了第一剂 MMR 疫苗,该剂量仍可算作有效剂量。有关更多信息,请参阅 CDC:免疫生物制剂的时机和间隔 (www.cdc.gov/vaccines/hcp/acip-recs/general-recs/timing.html)。
图 1. crRNA 性能受上游间隔物的 GC 含量影响 (A) CRISPR-Cas12a 操纵子由 Cas 基因和一个 CRISPR 阵列组成。(B) 每个 crRNA 由一个重复序列和一个间隔物组成。预处理重复序列包含一个 ~16-18-nt 片段,此处称为 CRISPR 分隔符,该片段由 Cas12a 和一种未知酶切除。(C) 在哺乳动物细胞中表达 Cas12a 阵列时,之前已省略了分隔符。我们想了解分隔符是否有助于使 crRNA 免受间隔物中二级结构的负面影响。(D) 我们设计了由两个 crRNA 组成的 CRISPR 阵列,第一个具有非靶向无义间隔物,第二个靶向 GFP 启动子,该启动子在 HEK293T 细胞中基因组整合。(E) 实验设置;分析 GFP 荧光作为阵列性能的衡量标准。 (F) CRISPR 阵列可以显示出对无义间隔物的组成的超敏感性。在极端情况下,将最后一个核苷酸从 T 替换为 G 可能导致 GFP 激活几乎完全终止。(G) 51 个 CRISPR 阵列的文库,其中第一个 crRNA 包含一个具有不同 GC 含量的无义间隔物,第二个 crRNA 靶向 GFP。无义间隔物的 GC 含量与 GFP 荧光之间存在强烈的负相关性。每个点代表 51 个 CRISPR 阵列中的一个(三个重复)。根据阵列启用的 GFP 荧光水平将阵列分为三组。框表示在 I 和 J 中分析的两组。(HJ) 对于每个组,计算了滑动 5-nt 窗口的平均 GC 含量。性能最佳的阵列是无义间隔物在其 3' 端恰好具有低 GC 含量的阵列。一些阵列因其无义间隔物的 GC 含量 ( G ) 而显示出意外的高或低 GFP 活性。这些阵列在其无义间隔物的 3' 端含有低 ( I ) 或高 ( J ) GC 含量,这表明最后几个碱基的 GC 含量是阵列性能的重要预测因素。HJ 中的阴影区域表示标准误差。( K ) 了解无义 crRNA 中 3-nt 区域 GC 含量的预测能力 (方法)。( L ) 显示预测的二级结构 (-Δ(最小自由能)) 和 51 个无义间隔物的 GC 含量之间关系的图。
鉴于口服(Sabin)脊髓灰质炎病毒疫苗免疫疫苗失败的高频率,在印度的婴儿中评估了灭活(SAK)脊髓灰质炎病毒疫苗(IP V)的免疫原性疗效。 总共150名儿童,年龄在6-45周之间,给予3剂IPV,间隔为4或8周的剂量。 评估了对儿童年龄的抗体反应的影响,免疫前母体抗体的存在以及剂量之间的间隔。 1、2和3型脊髓灰质炎病毒的总体血清转化率分别为99%,89%和91%。 血清转化率对第2和3型,以及I型和2型的抗体滴度,在未检测到的母体抗体的婴儿中,以8周的间隔给予疫苗剂量的婴儿(I)较高(I)。 以8周的间隔给予IPV的婴儿的血清转化率分别为1、1、2和3型脊髓灰质炎病毒分别为100%,100%和96.21%。 因此,发现IPV的免疫原性功效令人满意。鉴于口服(Sabin)脊髓灰质炎病毒疫苗免疫疫苗失败的高频率,在印度的婴儿中评估了灭活(SAK)脊髓灰质炎病毒疫苗(IP V)的免疫原性疗效。总共150名儿童,年龄在6-45周之间,给予3剂IPV,间隔为4或8周的剂量。评估了对儿童年龄的抗体反应的影响,免疫前母体抗体的存在以及剂量之间的间隔。1、2和3型脊髓灰质炎病毒的总体血清转化率分别为99%,89%和91%。血清转化率对第2和3型,以及I型和2型的抗体滴度,在未检测到的母体抗体的婴儿中,以8周的间隔给予疫苗剂量的婴儿(I)较高(I)。以8周的间隔给予IPV的婴儿的血清转化率分别为1、1、2和3型脊髓灰质炎病毒分别为100%,100%和96.21%。因此,发现IPV的免疫原性功效令人满意。
