抽象的DNA复制面临着源自内源性或E X强度来源的DNA病变的挑战,导致单链DNA(SSDNA)的积累,从而触发了Atr c Hec Kpoint响应的激活。为在存在受损的DNA的情况下完成基因组复制,细胞采用DNA损伤耐受机制,不仅在停滞的复制叉上运行,而且在ssDNA间隙下,源自病变下游DNA合成的SSDNA间隙。在这里,我们证明了人类细胞积累了复制后的ssDNA间隙。t hese间隙,由远程切除exo1和dna2引起了b y p rimpol谴责,并构成了与失速的叉子相比,ssDNA信号的主要起源是负责复制应力的ATR激活的主要起源。引人注目的是,当与BRCA1缺乏症结合使用时,EXO1或DNA2的丢失会导致合成致死性,但不能导致BR Ca2。他的现象与仅BRCA1仅有助于ssDNA间隙的扩展的观察结果一致。非常明显的是,BRCA1缺陷型细胞会上瘾Exo1,DNA2或BLM的Xpression。他对Br Ca1突变肿瘤的远距离切除术的依赖,从而阐明了这些癌症的潜在治疗靶标。
及何 杰拉德·阿格(Gerard Alleng)(杰拉德·艾伦(Gerard Alleng)(美国国际开发银行),安娜·玛丽亚·波格达诺瓦(Anna-Maria Bogdanova)(世界银行/全球减少灾难与恢复机构(GFDRR)(GFDRR)(GFDRR)),Isabelle Braly-Cartillier(美国跨美国发展银行),Jahan-Zeb Chowdhury(Jahan-Zeb Chowdhury for International Fornife) Alexandra Galperin(亚洲发展银行),Amir Habchi(欧洲重建与发展银行),Niels B. Holm-Nielsen(世界银行/GFDRR),Kevin Horsburgh(绿色气候基金),Portia Hunt(联合国亨特(联合国环境)计划),詹姆斯·金迪(James Kinyangi)(非洲开发银行) Programme), Xianfu Lu (Climate Investment Funds),Kouassi Malvika Monga (Global Environment Facility), Silvia Mancini (Adaptation Fund), Jesse Mason (World Food Programme), Daouda Ndiaye (Islamic Development Bank), Solomon Ngoze (African Development Bank), Maria Anna C. Orquiza (Asian Development Bank), Moussa Sidibe (World银行/GFDRR),弗拉基米尔·托克诺夫(World Bank/GFDRR),Jochem Zoetelief(联合国环境计划);杰拉德·阿格(Gerard Alleng)(杰拉德·艾伦(Gerard Alleng)(美国国际开发银行),安娜·玛丽亚·波格达诺瓦(Anna-Maria Bogdanova)(世界银行/全球减少灾难与恢复机构(GFDRR)(GFDRR)(GFDRR)),Isabelle Braly-Cartillier(美国跨美国发展银行),Jahan-Zeb Chowdhury(Jahan-Zeb Chowdhury for International Fornife) Alexandra Galperin(亚洲发展银行),Amir Habchi(欧洲重建与发展银行),Niels B. Holm-Nielsen(世界银行/GFDRR),Kevin Horsburgh(绿色气候基金),Portia Hunt(联合国亨特(联合国环境)计划),詹姆斯·金迪(James Kinyangi)(非洲开发银行) Programme), Xianfu Lu (Climate Investment Funds),Kouassi Malvika Monga (Global Environment Facility), Silvia Mancini (Adaptation Fund), Jesse Mason (World Food Programme), Daouda Ndiaye (Islamic Development Bank), Solomon Ngoze (African Development Bank), Maria Anna C. Orquiza (Asian Development Bank), Moussa Sidibe (World银行/GFDRR),弗拉基米尔·托克诺夫(World Bank/GFDRR),Jochem Zoetelief(联合国环境计划);杰拉德·阿格(Gerard Alleng)(杰拉德·艾伦(Gerard Alleng)(美国国际开发银行),安娜·玛丽亚·波格达诺瓦(Anna-Maria Bogdanova)(世界银行/全球减少灾难与恢复机构(GFDRR)(GFDRR)(GFDRR)),Isabelle Braly-Cartillier(美国跨美国发展银行),Jahan-Zeb Chowdhury(Jahan-Zeb Chowdhury for International Fornife) Alexandra Galperin(亚洲发展银行),Amir Habchi(欧洲重建与发展银行),Niels B. Holm-Nielsen(世界银行/GFDRR),Kevin Horsburgh(绿色气候基金),Portia Hunt(联合国亨特(联合国环境)计划),詹姆斯·金迪(James Kinyangi)(非洲开发银行) Programme), Xianfu Lu (Climate Investment Funds),Kouassi Malvika Monga (Global Environment Facility), Silvia Mancini (Adaptation Fund), Jesse Mason (World Food Programme), Daouda Ndiaye (Islamic Development Bank), Solomon Ngoze (African Development Bank), Maria Anna C. Orquiza (Asian Development Bank), Moussa Sidibe (World银行/GFDRR),弗拉基米尔·托克诺夫(World Bank/GFDRR),Jochem Zoetelief(联合国环境计划);
摘要。干旱是一场毁灭性的自然灾害,在此期间,水短缺通常体现在植被的健康中。不幸的是,在空间和时间上获得高分辨率的植被影响信息很难。虽然远程感知的产品可以提供此信息的一部分,但它们通常会根据其空间或时间分辨率的数据差距和限制。远程感应产品之间的一个持续特征是空间分辨和重访时间之间的权衡:高时空分辨率与粗空分辨率达到了高度分辨率,反之亦然。机器学习方法已成功应用于广泛的遥感和水文研究。然而,仍然需要提供解决对植被的干旱影响的全球应用程序,因为这种产品有显着的潜力可以帮助改善干旱影响监测。为此,这项研究预测了基于增强的植被内部(EVI)和流行的随机森林(RF)回归体的全球植被动态。我们评估了RF作为间隙填充和缩减工具的适用性,以生成在空间和时间上一致的全局EVI估计值。为此,我们使用了许多特征,指示了植被经验丰富的水和能量平衡,并评估了该新产品的性能。结果表明,RF可以以0.1°分辨率(RMSE:0.02-0.4)和0.01°分辨率(RMSE:0.04-0.6)捕获全局EVI动力学。接下来,为了测试RF在空间分辨率方面是否稳健,我们降低了全局EVI:在0.1°数据上训练的模型用于以0.01°的重置预测EVI。总体误差更高。尽管如此,相对增加仍然是
X.du 1,Y。D. Li 1,Y。T. Cao 2,3,C。Y. Pei 4,M。X. Zhang 4,W。X. Zhao 1,K。Y. Y. Zhai 1,R。Z. Xu 1,Z.
超导间隙对称性对于理解潜在的超导性机制至关重要。角度分辨光发射光谱(ARPES)在确定非常规超导体中的间隙对称性方面起着关键作用。然而,到目前为止,ARPE只能测量超导间隙的大小,而不能测量其相位的幅度。该相必须由其他相敏感技术检测到。在这里,我们提出了一种直接检测ARPES超导间隙标志的方法。使用众所周知的D波间隙对称性,在Cuprate超导体BI 2 SR 2 SR 2 CACU 2 O 8+δ中成功验证了此方法。当两个频段具有较强的带间相互作用时,超导状态下所得的电子结构对两个频段之间的相对间隙标志敏感。我们目前的工作提供了一种检测间隙标志的方法,可以应用于各种超导体,尤其是具有多个轨道的超导体,例如铁基超导体。
摘要。我们先前研究中产生的长期无缘高分辨率空气污染物(LGHAP)浓度数据集提供了空间连续的每日气溶胶光学深度(AOD)和细节颗粒物(PM 2。5)自2000年以来,中国1公里的网格分辨率的浓度。这一进步赋予了对区域气溶胶变化的前所未有的评估及其对过去20年中环境,健康和气候的影响。但是,有必要增强这种高质量的AOD和PM 2。5浓度数据集具有新的可靠功能和扩展的空间覆盖范围。在这项研究中,我们介绍了全球尺度LGHAP数据集(LGHAP V2)的版本2,该版本是通过使用多功能数据科学,模式识别和机器学习方法的无缝集成的改进的Big Earth Data Analytics生成的。特定的,从相关卫星,地面监测站获得的多模式AOD和空气质量测量值通过利用基于随机的数据驱动模型的能力来协调。随后,开发了改进的基于张量流的AOD重建算法,以编织统一的多源AOD产品共同填充数据差距,以填补大气孔校正(MAIAIA)AOD AOD AOD从Terra的多角度实现。消融实验的结果表明,在收敛速度和数据准确性方面,基于张量的间隙填充方法的改进性能更好。for pm 2。5浓度测量。 验证结果表明无间隙PM 2。 55浓度测量。验证结果表明无间隙PM 2。5Ground-based validation results indicated good data accuracy of this global gap-free AOD dataset, with a correlation coefficient ( R ) of 0.85 and a root mean square error (RMSE) of 0.14 compared to the worldwide AOD observations from the AErosol RObotic NETwork (AERONET), outperforming the purely re- constructed AODs ( R = 0.83, RMSE = 0.15), but they were比原始的Maiac AOD检索稍差(r = 0.88,RMSE = 0.11)。5浓度映射,一种新颖的深度学习方法,称为场景意识到的集合学习图表网络(SCAGAT)。在考虑到跨区域的数据驱动模型的场景代表性时,SCAGAT算法在空间外推时进行了更好的表现,在很大程度上降低了对有限和/甚至不存在原位PM 2的区域的建模偏差。5浓度估计值具有更高的预测精度,与PM 2相比,R为0.95,RMSE为5.7 µg m-3。
在DNA病变处的拉长RNA聚合酶II(RNAPII)启动转录耦合修复(TCR),涉及特定TCR因子的一致作用,然后是下游核苷酸切除修复步骤。明确地说,仅CSA或CSB基因中的先天性缺陷引起神经退行性疾病Cockayne综合征,尽管在TCR中同样重要,但它并未与其他TCR基因观察到。缺乏这种差异的解释。在这项研究中,我们开发了一种测定法,以跟踪紫外线诱导的DNA病变部位伸长RNAPII的命运。在TCR基因敲除细胞的同源性集合中采用这种方法表明,与其他TCR基因的基因敲除相比,CSA或CSB中细胞中有缺陷的RNAPII清除缺陷。我们的发现提供了证据表明,RNAPII处理的不足和响应DNA损伤的长期转录停滞,而不是DNA修复,这可能是Cockayne综合征神经退行性表型的基础。
图1。三轴分类系统是分析肺间充质细胞成分的策略。(a)图显示了基于其支持的结构的单个间质细胞类型的一般解剖位置:血管树(血管平滑肌[VSM],周围树),上皮树(Airway平滑肌[ASM],导管和肺泡的肌肉肌纤维细胞和肌肌纤维细胞)和植物(proircimal instrastial superstitial institial softistial softsitial confiral [pic] pic](b)表总结了间充质细胞类型的标记。(Narvaez del Pilar,O。et al。2022)
二维半导体 - 螺旋体异质结构构成了许多纳米级物理系统的基础。但是,测量此类异质结构的性质并表征半导体原位是具有挑战性的。[1]最近的一项实验研究能够使用超流体密度的微波测量值探测杂质内的半导体。这项工作表明,由平面磁场引起的半导体中超流体密度的迅速耗竭,在存在自旋轨道耦合的情况下,这会产生所谓的Bogoliubov Fermi Sur- sus。实验工作使用了一个简化的理论模型,该模型忽略了半导体中非磁性疾病的存在,因此仅在定性上描述数据。是由实验激励的,我们引入了一个理论模型,该模型描述了一个具有强旋转轨道耦合的无序半导体,该模型由超级导体邻近。我们的模型为状态密度和超流体密度提供了特定的预测。存在疾病的存在导致无间隙超导阶段的出现,这可能被视为Bogoliubov Fermi表面的表现。应用于真实的实验数据时,我们的模型显示出了出色的定量一致性,并在考虑到磁场的轨道贡献后,提取了材料参数(如平均自由路径和迁移率),以及e ef the g-tensor。我们的模型可用于探测其他超导体 - 症状导体异质结构的原位参数,并可以进一步扩展以访问运输特性。