摘要:过去几十年来,脑病理的发生率有所增加。更好的诊断(自闭症谱系障碍)和更长的预期寿命(帕金森氏病,阿尔茨海默氏病)部分解释了这一增加,而新兴的数据表明污染物暴露是可能但仍低估的主要脑疾病原因。考虑到大脑实质富含间隙连接,大多数污染物都会抑制其功能;脑部疾病可能是由于长期暴露于污染物而导致的间隙变化改变的结果。在本文中,通过三个互补方面解决了这一假设:(1)脑实质及其功能中的间隙 - 连接性组织和连接性的表达; (2)主要污染物(农药,双苯酚A,邻苯二甲酸盐,重金属,空气颗粒等)的作用)在间隙 - 界面和连接素函数上; (3) a description of the major brain disorders categorized as neurodevelopmental (autism spectrum disorders, attention deficit hyperactivity disorders, epilepsy), neurobehavioral (migraines, major depressive disorders), neurodegenerative (Parkinson's and Alzheimer's diseases) and cancers (glioma), in which both connexin dysfunction and已经描述了污染物的参与。基于这些不同的方面,讨论了产前和产后暴露的污染物抑制剂间隙连接的可能参与。
3形态发生的TGD视图12 3.1可能基于TGD的形态发生视图。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 12 3.2膜电位和间隙连接连接如何定义形态遗传程序? 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 13 3.2.1事实。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 13 3.2.2与目标电动编码有关的问题。 。 。 。3形态发生的TGD视图12 3.1可能基于TGD的形态发生视图。。。。。。。。。。。。。。。。。。。。。12 3.2膜电位和间隙连接连接如何定义形态遗传程序?。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 3.2.1事实。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 3.2.2与目标电动编码有关的问题。。。。。。。。。。。。。。13 3.3如何产生潜在的梯度?。。。。。。。。。。。。。。。。。。。。。。。。14 3.4 MB的状态如何充当进化模板?。。。。。。。。。。。15 3.4.1平面分裂会发生什么?。。。。。。。。。。。。。。。。16 3.5一些问题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16
脑表达基因的进化速度明显慢于其他组织中表达基因的进化速度,这一现象可能是由于高级功能限制造成的。其中一个限制可能是神经元组合对信息的整合,从而增强环境适应性。本研究通过三种类型的同步探索了神经元中信息整合的生理机制:化学、电磁和量子。化学同步涉及多巴胺和乙酰胆碱等神经递质的弥散释放,导致传输延迟数毫秒。电磁同步包括动作电位、电间隙连接和偶联。电间隙连接使皮质 GABA 能网络内的快速同步成为可能,而偶联则使轴突束等结构能够通过细胞外电磁场同步,速度超过了化学过程的速度。据推测,量子同步涉及离子通道通过期间的离子相干性和髓鞘内光子的纠缠。与化学和电磁过程中的有限时间同步不同,量子纠缠提供瞬时非局部相干状态。神经元可能从较慢的化学扩散进化为快速的时间同步,离子通过皮质 GABAergic 网络内的间隙连接可能促进快速伽马波段同步和量子相干。这篇小综述汇编了有关这三种同步类型的文献,为解决神经元组装中结合问题的生理机制提供了新的见解。
细胞相互作用是多细胞寿命的基础。专门的结构,例如动物细胞中的间隙连接和植物细胞中的质量肿块,允许在相邻细胞之间进行直接通信。这些途径可以使离子,分子和信号的转移,确保组织内的协调和凝聚力。化学信号分子,例如激素和神经递质,进一步增强了细胞间通讯,促进了复杂过程,例如生长,发育和免疫反应[10]。
连接素(CXS)是形成高导质质膜通道的整体膜蛋白,可从细胞到细胞(通过间隙连接)以及从细胞到细胞外环境(通过半通道)的通信。最初描述的是它们在连接可激发细胞(神经和肌肉)中的作用,间隙连接(GJ)几乎在固体组织中的所有细胞之间都发现,对于功能协调至关重要,可以通过直接传递小信号分子,代谢物,离子,离子和电信号从细胞到细胞到细胞。几项研究揭示了CXS的多种渠道非依赖性功能,其中包括控制细胞生长和肿瘤性。connexin43(CX43)是人体中最广泛的CX。CX43的无数作用及其对癌症,炎症,骨关节炎和阿尔茨海默氏症的疾病的发展的影响引起了许多新的问题。使用不同的计算方法预测了CX43和CX26序列中的几个RNA和DNA结合基序。本综述提供了对CXS新的,破裂功能的见解,突出了未来工作的重要领域,例如通过细胞外囊泡转移遗传信息。我们讨论了电位RNA和DNA结合域在CX43和CX26序列中的含义中,在信号通路的细胞通信和控制中。©2017作者。由Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
神经系统中存在多种延迟来源。首先考虑由于动作电位沿轴突传播而导致的延迟。在上述模型中,当动作电位在神经元 j 的细胞体中产生时,与其相连的所有其他神经元会立即感受到它。然而,实际上,动作电位必须沿着神经元 j 的轴突传播到突触或间隙连接。传导速度范围从沿无髓轴突的 1 米/秒数量级到沿有髓轴突的 100 米/秒以上 [16, 55]。这可能导致某些脑结构出现显著的时间延迟。有多种方法可以将其纳入模型,例如包括变量的空间依赖性或代表神经元不同部分的多个隔间 [37]。然而,如果我们主要关注动作电位到达轴突末端时的影响(它会在另一个神经元中引起动作电位吗?),那么更简单的方法是在耦合项中加入时间延迟。在这种情况下,一般耦合项变为 f ij ( xi ( t ) , xj ( t − τ ij )) (4)
(斯坦福大学博士后)研究 2 型糖尿病相关基因 ZMIZ1 缺失对人类 β 细胞的影响 Catherine Dombroski(加州大学戴维斯分校博士生)进化和饮食偏好差异对胰腺结构和胰岛功能的影响 Madelynn Tucker(加州大学戴维斯分校博士生)接触交通相关空气污染会降低大鼠 β 细胞成熟度标志物 Kassy Lopez(希望之城博士生)阐明反应性代谢副产物作为 2 型糖尿病预测因子和驱动因素的作用 Nathan Vaughan(杨百翰大学本科生)探索胰腺 β 细胞中转录因子 Nkx6.1 和 Pdx1 之间的相互作用 Claire Levitt(科罗拉多大学博士生)设计假胰岛以研究人类胰岛的间隙连接 Seth Sharp(斯坦福大学博士后)胰岛的整合利用 GWAS-in-a-Dish 进行多组学研究,识别葡萄糖刺激的胰岛素分泌和胰岛素含量的细胞调节剂 6.00-7.00 PM 晚餐前的自由交流时间
神经假体是一种精准医疗设备,其目的是以闭环方式操纵大脑的神经信号,同时接收来自环境的刺激并控制我们大脑/身体的某些部分。就视觉而言,大脑可以在毫秒间隔内处理传入的信息。视网膜计算视觉场景,然后将其输出作为神经元尖峰发送到皮质进行进一步计算。因此,视网膜神经假体感兴趣的神经元信号是尖峰。神经假体中的闭环计算包括两个阶段:将刺激编码为神经元信号,并将其解码为刺激。在这里,我们回顾了一些关于使用尖峰分析自然场景(包括静态图像和动态电影)的视觉计算模型的最新进展。我们假设,为了更好地理解视网膜的计算原理,需要对视网膜有一个超电路视图,其中应该考虑皮质神经网络中揭示的不同功能网络模式。视网膜的不同组成部分,包括多种细胞类型和突触连接,无论是化学突触还是电突触(间隙连接),使视网膜成为理想的神经网络,以适应人工智能中开发的计算技术,用于对视觉场景进行编码/解码建模。总之,我们需要一种带有脉冲的视觉计算系统方法来推动下一代视网膜神经假体作为人工视觉系统的发展。
摘要:CDKL5(Cyclin依赖性激酶样5)缺陷障碍(CDD)是一种严重的神经性疾病,主要影响女孩,这些疾病是X-C-连接CDKL5基因突变的杂合子。CDKL5基因中的突变导致缺乏CDKL5蛋白表达或功能,并引起许多临床特征,包括早发作性癫痫发作,明显的低位症,自闭症特征,胃肠道问题和严重的神经发育障碍。CDD的小鼠模型概括了CDD症状的几个方面,包括认知障碍,运动量和类似自闭症的特征,并且对于剖析CDKL5在大脑发育和功能中的作用非常有用。但是,我们目前对CDKL5功能在其他器官/组织中的功能的了解仍然非常有限,从而减少了广谱干预的可能性。在这里,第一次,我们报告了杂合CDKL5 +/ - 雌性小鼠中心脏功能/结构改变的存在。我们发现CDKL5 +/ - 小鼠中延长的QT间隔(校正心率,QTC)和心率增加。这些变化与副交感神经对心脏以及SCN5A和HCN4电压门控通道的表达相关。有趣的是,CDKL5 +/ - 心脏显示出增加的纤维化,间隙连接组织的改变,连接蛋白43表达,线粒体功能障碍和ROS产生增加。一起,这些发现不仅有助于我们对CDKL5在心脏结构/功能中的作用的理解,而且还记录了一种新型的临床前表型,以进行未来的治疗研究。
图 1 EMT 过程中的细胞事件。正常情况下,上皮细胞以单细胞层或多层形式存在,并通过特殊的细胞间连接相互通讯,包括桥粒、亚顶端紧密连接、黏附连接和分散的间隙连接。一旦上皮细胞受损,上皮细胞 - 细胞连接就会溶解,上皮细胞失去顶端 - 基底极性并获得前后极性。此外,细胞骨架结构会重组,E-钙粘蛋白的表达被 N-钙粘蛋白的表达取代,这有助于细胞运动和侵袭性。然后,基底膜会溶解。在胚胎发生过程中,上皮和间充质细胞通过 EMT 和 MET 相互转化,这种转化被称为 I 型 EMT,对胚胎发育和器官形成至关重要。在 II 型 EMT 中,间充质样细胞随后转化为肌成纤维细胞,产生过量胶原蛋白,导致纤维化。在 III 型 EMT 中,间充质样细胞随循环系统迁移到次要位置,迁移细胞通过 MET 形成继发性肿瘤。绿色方格表示三种 EMT 类型中的共同过程,可以针对该过程治疗纤维化和肿瘤。EMT,上皮间充质转化;MET,间充质上皮转化 [彩色图可在 wileyonlinelibrary.com 上查看]