考虑到在经济和金融危机的特定时期,面对上市公司证券可能出现的投机行为,有必要保护投资者,并保证公司控制权市场的效率和透明度其特点是股价明显下跌,如上所述,这可归因于 COVID-19 疫情的蔓延;考虑到,为了确定当前市场价值,可以考虑截至 2019 年 12 月 31 日的资本化,即中国 COVID-19 疫情消息传播前后的日期,特别是第一个2020 年 1 月 9 日,世界卫生组织确认,一场流行病源自一种此前未知的冠状病毒。考虑到,如果市值超过 5 亿欧元,则可以认为存在上述高当前市场价值,即艺术所指示的门槛。1,第 1 段,第 w.quater.1 项,用于 PMI 的定义;考虑到艺术中规定的目的。根据 TUF 第 120 条第 2 款之二,特别广泛的持股要求可以参考控制结构,因此在发行人根据条款受到法律控制的情况下必须将其排除。2359,第 1 段,n。 1) c.c.,参见第 3.1 条。《财政合并法》第 93 条;考虑到所附清单中《上市公司法》第 131 条所要求的条件的存在。《合并财政法》第 120 条第 2 款之二,因此,考虑到采用上述条款中提到的合理规定的条件是存在的。《综合财政法》第 120 条第 2 款之二;考虑到为了确保更好地保护投资者以及公司控制权市场和资本市场的效率和透明度,“在有限的时间内,提供低于第 2 段所述门槛的门槛”是适当的。艺术。120 的 Tuf;还考虑到目前,自本决议生效之日起三个月的期限是合理的,且符合参考标准的要求,但如果根本原因不复存在,则可提前撤销所考虑的措施的通过;决议:依据艺术。120 第 2 款,适用于所附清单 A 部分中提及的公司,以及 ii) 根据第 120 条可归类为中小企业的公司额外 3% 的门槛。根据艺术。预计,自本决议生效之日起三个月内,合并财政法第 120 条第 2 款之二将规定,i) 1% 的额外门槛超过该范围,则将产生第 3 条所规定的沟通义务。1 w- 合并财政法第 4.1 条,见所附清单 B 部分。第 14 条规定的重大股权报告义务豁免仍然有效。发行人条例 119-bis。根据《综合财政法》第 114 条第 5 款,任何人于本条例生效之日起
[1] I. Y. Jung,“飞机维护安全管理分析及改进”,韩国国立交通大学硕士学位论文,韩国忠州,2015 年。 [2] S. H. Park,“基于行星齿轮系的调速器设计研究”,世宗大学硕士学位论文,韩国首尔,2013 年。 [3] P. Ky,年度安全评估,欧洲航空安全局,2016 年 [4] 航空信息门户系统。年度航空事故状况 [Internet]。可访问网址:http://www.airportal.go.kr/life/accident/stat/status.jsp [5] Gh. Buzdugan、E. Mihailescu 和 M. Rades,振动测量,2010 年版,荷兰,Springer,2010 年 [6] AMCOM,ADS-79-HDBK rev. D、航空设计标准:美国陆军飞机系统基于条件的维护系统手册,美国陆军航空与导弹研究、发展与工程中心,2013 年 [7] 韩国直升机项目组,HGS 质量保证要求,QARA81537302,DAPA,2013 年。
氯化物阈值的概率处理 Carmen Andrade、Fabiano Tavares、Nuria Rebolledo、David Izquierdo 摘要:众所周知,氯化物阈值是一个变量值,取决于与水泥化学、混凝土特性和外部环境相关的许多参数。已经进行了多项研究,试图找到可以预测特定混凝土阈值的一般规律。虽然这个目标是解决问题最严格的方法,但在实际工作中测量所有影响参数似乎非常困难。另一种方法是以合理的方式分析变异性。这是在当前工作中根据新模型代码 2010 中提出的最新方法完成的,该方法考虑了确定性到概率模型来预测使用寿命。首先从其渐进性的角度分析脱钝事件,旨在确定氯化物阈值变化,其统计分布已在实验室中测量,并且已显示与实际结构中的观察结果一致。此外,还对脱钝概率的含义及其从结构角度的考虑进行了评论。最后提到了一种加速测试方法,该方法能够在短于 4 至 8 周的测试时间内确定氯化物阈值。使用加速测试评估仅含波特兰水泥和含矿渣波特兰水泥的样品的测试。关键词:氯化物;混凝土;腐蚀;统计;测试;阈值。
摘要在2018年和2019年,Heatwaves在全球范围内创造了历史记录,并对人类健康,农业,自然生态系统和基础设施造成了不利影响。通常,严重影响与热浪的关节空间和时间范围有关,但是到目前为止,大多数研究都集中在热浪的空间或时间属性上。此外,很少讨论热浪特征对在温暖气候下选择热波阈值的敏感性。在这里,我们在全球气候模型的模拟中分析了最大的时空中度热浪(即炎热日的三维(时空)簇)。我们使用三个不同的危险阈值来定义炎热的一天:固定阈值(时间不变的气候阈值),根据夏季平均值的变化,季节性移动阈值以及完全移动的阈值(相对于未来的气候学定义的炎热日子)。我们发现,使用固定阈值的全球变暖,时空连续的中度连续热带大幅增加,而其他两个危险阈值的变化却不那么明显。尤其是,当使用时间完全移动的阈值相对于将来的气候定义时,检测到热浪定义的整体幅度,空间范围和持续时间的变化很小或很少。这表明与全球气候模型模拟中的动态效应相比,热力学的主要贡献。季节性移动和完全移动的阈值之间的相似性表明,单独的季节性平均变暖可以解释极端变暖的大部分。在潜在的未来热有关影响的预测中应考虑模拟未来热浪对危险阈值的强烈敏感性。
摘要本文提出了Popstar,这是一种用于重型击球手的私人计算的新型轻量级协议,也称为私人阈值报告系统。在这样的协议中,用户提供了输入测量值,并且报告服务器学习哪些测量值不仅仅是预先指定的阈值。Popstar遵循与Star(Davidson等人,CCS 2022)相同的体系结构,除了计算总重型击球手统计信息的主服务器外,还依靠助手随机服务器。虽然Star非常轻巧,但它泄漏了大量信息,包括提供的测量结果的整个直方图(但仅揭示出出现在阈值以下的实际测量值)。popstar表明,可以以适中的成本减少这种泄漏(约7×较长的聚合时间)。我们的泄漏更接近Poplar(Boneh等,S&P 2021),该泄漏依赖于分布点功能和一个不同的模型,该模型需要两个非批评服务器(具有相同工作量)来计算重型击球手的相互作用。
这项研究提出了针对大脑图像的基于全球阈值的机器学习算法。对于每个段,该网络使用各种补丁大小和决策树收集多尺度数据,从而确保该方法捕获了准确的分割信息。对于该方法,只需要一个解剖学MR图像。此方法获得了De-Noise图片和清洁图像数据。脑功能障碍的主要原因包括脑部疾病或恶性肿瘤。肿瘤是一块很小的脑组织,无法控制地生长。世界上大多数人口都患有脑部疾病,近100亿人从脑肿瘤中丧生(Cha,2006)。这是大脑的MRI。找到肿瘤,使用MRI扫描。由于分段和
条款[7]的目标是自动化上一阶段提出的PCNN边缘检测模型中阈值的手动调整。这是通过使用从PCNN分割输出中提取的边缘特征并将其与基于DNN的预测相结合的,以了解PCNN模型的自适应阈值参数设置。Contourlet变换用于从PCNN分割模型的每个迭代输出的子带中提取特征向量。然后,将中值滤波应用于提取的特征向量,然后计算方差和平均值作为特征向量。最后,提出了一种基于DNN的边缘检测算法来实现自适应阈值预测。此方法仅在PCNN模型的六个迭代后就可以实现更好的边缘检测结果。
钙钛矿量子点 (QD) 是溶液处理激光器所关注的焦点;然而,它们的俄歇寿命较短,限制了激光操作主要在飞秒时间范围内进行,在纳秒范围内实现光学增益阈值的光激发水平比在飞秒范围内高出两个数量级。本文作者报告了 QD 超晶格,其中增益介质促进激子离域以减少俄歇复合,并且结构的宏观尺寸提供激光所需的光学反馈。作者开发了一种自组装策略,该策略依赖于钠——一种钝化 QD 表面并诱导自组装以形成有序三维立方结构的组装导向器。考虑 QD 之间吸引力的密度泛函理论模型可以解释自组装和超晶格的形成。与传统的有机配体钝化量子点相比,钠具有更高的吸引力,最终导致微米级结构和反馈所需的光学刻面的形成。同时,新配体使点间距离减小,增强了量子点之间的激子离域,动态红移光致发光就是明证。这些结构充当激光腔和增益介质,实现阈值为 25 μ J cm –2 的纳秒级持续激光。
手稿版本:作者接受的手稿包装中呈现的版本是作者接受的手稿,可能与已发布的版本或记录的版本有所不同。持续的包裹URL:http://wrap.warwick.ac.uk/144053如何引用:有关最新的书目引用信息,请参考发布版本。如果已知已发布的版本,则链接到上面的存储库项目页面将包含有关访问它的详细信息。版权所有和重复使用:沃里克研究档案门户(WARAP)使沃里克大学的研究人员在以下条件下可用开放访问权限。版权所有©以及此处介绍的论文版本的所有道德权利属于单个作者和/或其他版权所有者。在合理且可行的范围内,已在可用的情况下检查了包装中可用的材料是否有资格。未经事先许可或收费,可以将完整项目的副本用于个人研究或研究,教育或非营利目的。前提是作者,标题和完整的书目细节被认为是针对原始元数据页面提供的超链接和/或URL,并且内容不会以任何方式更改。发布者的声明:请参阅“存储库”页面,发布者的语句部分,以获取更多信息。有关更多信息,请通过以下网络与WARP团队联系:wrap@warwick.ac.uk。
量子纠错 [1–4] 通过将多个物理量子位组合成一个逻辑量子位,为实现实用量子计算提供了一条途径,随着更多量子位的添加,逻辑错误率会呈指数级抑制。然而,只有当物理错误率低于临界阈值时,这种指数级抑制才会发生。在这里,我们在最新一代超导处理器 Willow 上展示了两个低于阈值的表面代码存储器:距离为 7 的代码和集成了实时解码器的距离为 5 的代码。当代码距离增加两倍时,我们更大的量子存储器的逻辑错误率被抑制了 Λ = 2.14 ± 0.02 倍,最终得到一个 101 量子位距离为 7 的代码,每个纠错周期的错误率为 0.143% ± 0.003%。这种逻辑存储器也超出了盈亏平衡点,是其最佳物理量子位的寿命的 2 倍。 4 ± 0 . 3. 我们的系统在实时解码时保持低于阈值的性能,在距离为 5 时实现平均 63 µ s 的解码器延迟,最多可进行一百万次循环,循环时间为 1.1 µ s。我们还运行距离为 29 的重复代码,发现逻辑性能受到每小时约一次或 3 × 10 9 次循环发生的罕见相关错误事件的限制。我们的结果表明,如果扩展,设备性能可以实现大规模容错量子算法的操作要求。