抽象的自主区域保护是多代理系统中重要的研究领域,旨在使捍卫者能够防止入侵者进入特定地区。本文提出了一个多代理区域保护环境(MRPE),其守卫者,防守者损害赔偿和入侵者逃避策略针对捍卫者。MRPE由于其高的非机构性和有限的拦截时间窗口而对传统保护方法提出了挑战。为了克服这些障碍,我们修改了进化增强学习,从而产生了相应的多代理区域保护方法(MRPM)。MRPM合并进化算法和深度强化学习的优点,特定利用差异进化(DE)和多代理的深层确定性政策梯度(MADDPG)。促进了各种样本探索并克服了稀疏的奖励,而MADDPG则训练防守者并加快了融合过程。此外,为多机构系统量身定制的精英选择策略是为了增强防御者的协作而设计的。本文还提出了巧妙的设计,以有效地推动政策优化的功能和奖励功能。最后,进行了广泛的数值模拟以验证MRPM的有效性。
俄罗斯入侵乌克兰一年后,有关网络作战在战时效用的某些假设现在可以接受检验。俄罗斯的网络齐射拉开了这场战争的序幕,但在强大的网络防御者面前,他们未能实现目标。联合网络/常规作战仍然难以实施,因为其效果不确定、可能产生溢出效应、恶意软件开发周期和不同的作战节奏。针对乌克兰的网络作战尚未在削弱乌克兰抵抗能力方面取得重大战略效果。此外,俄罗斯针对乌克兰和西方受众的信息行动也无人理睬。因此,网络作战的最大价值似乎仍然在于其情报和侦察功能。自 20 世纪 90 年代初以来,网络战一直被其支持者誉为军事革命或完美的战争武器。这些讨论大多是理论性的,通常集中在网络能力的应用如何达到或超过武装攻击的门槛,从而导致常规战争的问题上。然而,很少有实证研究考察网络能力在战争期间的军事行动效用。在过去一年的乌克兰战争中,网络能力在常规战争中得到了运用,这让我们可以初步得出网络能力作为战争工具时可能改变游戏规则的结论。
人工智能容易受到网络攻击。机器学习系统——现代人工智能的核心——充满了漏洞。利用这些漏洞的攻击代码已经广泛传播,而防御技术有限且难以跟上。机器学习漏洞允许黑客操纵机器学习系统的完整性(导致它们犯错)、机密性(导致它们泄露信息)和可用性(导致它们停止运行)。这些漏洞可能造成新型隐私风险、系统性不公正(如内在偏见)甚至身体伤害。机器学习系统的开发人员(尤其是在国家安全背景下)必须学习如何管理与这些系统相关的不可避免的风险。他们应该预料到对手会善于发现和利用弱点。政策制定者必须决定何时可以安全部署机器学习系统以及何时风险太大。对机器学习系统的攻击不同于传统的黑客攻击,因此需要新的保护和响应。例如,机器学习漏洞通常无法像传统软件那样修补,从而为攻击者留下了持久的漏洞。更糟糕的是,其中一些漏洞几乎不需要或根本不需要访问受害者的系统或网络,这为攻击者提供了更多机会,并降低了防御者检测和保护自己免受攻击的能力。因此,本文提出了四个发现供政策制定者考虑:
俄罗斯入侵乌克兰一年后,有关网络作战在战时效用的某些假设现在可以接受检验。俄罗斯的网络齐射拉开了这场战争的序幕,但在强大的网络防御者面前,他们未能实现目标。联合网络/常规作战仍然难以实施,因为其效果不确定、可能产生溢出效应、恶意软件开发周期和不同的作战节奏。针对乌克兰的网络作战尚未在削弱乌克兰抵抗能力方面取得重大战略效果。此外,俄罗斯针对乌克兰和西方受众的信息行动也无人理睬。因此,网络作战的最大价值似乎仍然在于其情报和侦察功能。自 20 世纪 90 年代初以来,网络战一直被其支持者誉为军事革命或完美的战争武器。这些讨论大多是理论性的,通常集中在网络能力的应用如何达到或超过武装攻击的门槛,从而导致常规战争的问题上。然而,很少有实证研究考察网络能力在战争期间的军事行动效用。在过去一年的乌克兰战争中,网络能力在常规战争中得到了运用,这让我们可以初步得出网络能力作为战争工具时可能改变游戏规则的结论。
俄罗斯联邦及其代理人对乌克兰及其支持其自决权的国家进行了多次网络行动。自 2014 年以来,这些行动和之前的行动给乌克兰和其他地区造成了严重破坏和动乱。然而,许多观察人士担心,在 2022 年 2 月俄罗斯入侵后,俄罗斯对关键基础设施或综合常规网络军事行动的攻击会更加有效。冲突爆发一年后,关于俄罗斯网络行动为何未能达到这些预期的长期争论仍在继续,焦点在于大多数行动是否被乌克兰网络防御和协助行为者成功挫败,或者俄罗斯国家和非国家行为者是否无法或不愿广泛部署网络行动。相比之下,这篇聚焦文章提供了对敌对行动第一年网络冲突模式的九点观察,重点关注国家与非国家之间的互动和行动模式,同时借鉴 EuRepoC 数据和第三方分析。正如 ENISA 最近的 2030 年网络安全威胁报告所重申的那样,未来几年网络攻击者的生态系统预计将进一步多样化,可能会塑造即将到来的网络威胁格局。然而,正如本文所讨论的那样,作为网络防御者的国家也应该加强对这些多方面威胁的应对措施。
评估的组织在CISA通过其他渠道向他们提醒红色团队用于初始访问的漏洞后,检测到红色团队在其Linux基础架构中的大部分活动。曾经给出了有关漏洞的正式通知,该组织的网络捍卫者开始减轻脆弱性。网络防御者删除了从公共Internet托管Web Shell的站点,但没有将服务器本身脱机。一周后,网络辩护人确定使用网络壳被用来违反内部网络后,将正式宣布事件。几周后,网络辩护人终止了红色团队的大部分访问权限,直到团队仅在四个主机上维持植入物。网络辩护者成功地推迟了红色团队访问需要其他定位的许多SBS,迫使红色团队花费时间对网络中的访问进行重视。尽管采取了这些操作,红色团队仍然能够访问SBS的子集。最终,红色团队和TAS决定将网络辩护人站起来,使红色团队能够在监视模式下继续其运营。在监视模式下,网络辩护人将报告他们对红色团队访问的观察到的内容,但不会继续阻止并终止它。
俄罗斯联邦及其代理人对乌克兰及其支持其自决权的国家进行了多次网络行动。自 2014 年以来,这些行动和之前的行动给乌克兰和其他地方造成了严重破坏和动乱。然而,许多观察家担心,在 2022 年 2 月俄罗斯入侵之后,俄罗斯对关键基础设施或综合常规网络军事行动的攻击会更加有效。冲突爆发一年后,关于俄罗斯网络行动为何未能达到这些预期的长期争论仍在继续,重点是大多数行动是否被乌克兰网络防御和协助行为者成功挫败,或者俄罗斯国家和非国家行为者是否无法或不愿广泛部署网络行动。相比之下,这篇聚焦文章提供了对敌对行动第一年网络冲突模式的九点观察,重点关注国家与非国家之间的互动和行动模式,同时借鉴 EuRepoC 数据和第三方分析。预计未来几年网络攻击者生态系统将进一步多样化,可能会塑造即将到来的网络威胁格局,正如 ENISA 最近的 2030 年网络安全威胁报告所呼应的那样。然而,正如本文所讨论的那样,作为网络防御者的国家也应该加强对这些多方面威胁的应对措施。
战略导弹防御或反弹道导弹 (ABM) 系统被认为是通过拒止资产进行威慑。关于这些系统是否稳定或破坏核大国之间的力量平衡的争论仍未解决。本文以东西方关系为例,重点关注北约的导弹防御努力,回顾了这种影响。本文分为两部分。第一部分是历史部分,回顾了冷战期间的东西方关系,基于战略武库、危机事件和与导弹防御发展相关的军备控制谈判。第二部分回顾了 2000 年以来的发展,再次使用了战略武库、危机事件、军备控制谈判以及北约和俄罗斯联邦的导弹防御比较。历史分析和当前形势分析都没有显示 ABM 系统具有显著的升级特性。特别是从历史角度来看,ABM 系统似乎具有稳定作用。然而,导弹防御的每一次发展都描绘出一幅未来的图景:对手的技术优势可能超过进攻能力,从而削弱一个国家的进攻能力。目前的情况详细表明,这样的未来从未形成,在可预见的未来也可能不会形成。它表明防御者在核攻击面前的劣势有多么巨大。将拦截器放置在合适的位置存在物理限制
在算法替代攻击的领域(ASA)中,我们朝着新的方向启动工作,即考虑对公共算法的这种攻击,这意味着不包含秘密的材料。示例是哈希函数,以及签名方案和非相互作用参数的验证算法。在我们所谓的PA-SA(公共载体替代攻击)中,大兄弟对手用颠覆算法代替了公共算法F,同时保留了后者的后门。我们认为,大兄弟的目标是使PA-SA成为三倍:它希望实用程序(它可以打破f-使用方案或应用程序),无法检测到(局外人无法检测到替代)和排他性(除了大兄弟以外的其他人都无法利用替代)。我们从F是任意的一般环境开始,对三个目标给出了强有力的定义,然后是我们证明遇到的PA-SA的构造。我们将其作为应用程序的应用程序,对哈希功能,签名验证和非交互性参数的验证,展示了新的有效方法来颠覆这些论点。作为前两个的进一步申请,我们在X.509 TLS证书上给出了PA-SA。尽管ASA传统上仅限于渗透秘密钥匙,但我们的工作表明,在没有截止钥匙的关键的情况下,它们在颠覆了公共功能方面是可能有效的。我们的建筑有助于防御者和开发人员通过说明如何建立攻击来确定潜在的攻击。
未强制执行多因素身份验证 (MFA)。MFA(尤其是用于远程桌面访问)可帮助防止帐户被盗用。由于远程桌面协议 (RDP) 是勒索软件最常见的感染媒介之一,因此 MFA 是减轻恶意网络攻击的关键工具。不要将任何用户(包括管理员)排除在该策略之外。 特权或权限应用不正确以及访问控制列表中的错误。这些错误可能会阻止访问控制规则的执行,并可能允许未经授权的用户或系统进程被授予对对象的访问权限。 软件不是最新的。未打补丁的软件可能允许攻击者利用已知的漏洞来访问敏感信息、发起拒绝服务攻击或控制系统。这是最常见的不良安全做法之一。 使用供应商提供的默认配置或默认登录用户名和密码。许多软件和硬件产品在出厂时都带有过于宽松的出厂默认配置,目的是使产品易于使用并减少客户服务的故障排除时间。但是,安装后保留这些出厂默认配置可能会为攻击者提供可乘之机。网络设备还经常预先配置了默认管理员用户名和密码以简化设置。这些默认凭据并不安全 - 它们可能物理标记在设备上,甚至可以在互联网上随时获取。如果不更改这些凭据,将为恶意活动创造机会,包括未经授权访问信息和安装恶意软件。网络防御者还应注意,同样的注意事项也适用于可能带有预配置默认设置的额外软件选项。 虚拟专用网络 (VPN) 等远程服务缺乏足够的控制来防止未经授权的访问。近年来,有人观察到恶意威胁行为者将远程服务作为目标。网络防御者可以通过添加访问控制机制(例如强制实施 MFA、在 VPN 前实施边界防火墙以及利用入侵检测系统 / 入侵防御系统传感器检测异常网络活动)来降低远程服务受到侵害的风险。 未实施强密码策略。恶意网络行为者可以使用多种方法利用弱密码、泄露密码或被泄露的密码获得对受害者系统的未经授权的访问。恶意网络行为者已将这种技术用于各种邪恶行为,尤其是在针对 RDP 的攻击中。 云服务不受保护。配置错误的云服务是网络行为者的常见目标。不良的配置可能导致敏感数据被窃取,甚至加密劫持。 开放端口和配置错误的服务暴露在互联网上。这是最常见的漏洞发现之一。网络攻击者使用扫描工具检测开放端口,并经常将其用作初始攻击媒介。成功入侵主机上的服务可能使恶意网络攻击者获得初始访问权限,并使用其他策略和程序入侵暴露和易受攻击的实体。RDP、服务器消息块 (SMB)、Telnet 和 NetBIOS 都是高风险服务。