阀门底部低温区表面的一层冰,由低温材料流动形成。除了延伸阀盖的底部和中部外,还有一个环绕阀体的低温区。低温区和大气区之间是第二个区域,即热区。该区域直接暴露在上部阀盖延伸部分的大气中。由于该区域与阀门内部流动的低温材料隔开,因此受冰的影响较小,并且低温温度低于最低区域。第三个也是最后一个区域是大气区。
人工智能模仿人类智能,用于预测和预防关键的汽车故障。这些故障通常发生在测试情况下,可能很危险。了解组件行为对于实施有效的故障防御措施至关重要。目前,预测随机组件故障具有挑战性。人工智能通过智能模拟真实世界条件来实现预测性故障模拟。通过将模拟的组件行为与实际数据进行比较,可以实现故障预测。这对于维护和备件供应计划非常有价值。汽车系统中的人工智能技术正在不断发展,对于解决当前问题和防止未来故障至关重要。模拟和预防性维护对于了解系统行为和防止故障至关重要。
风力涡轮机的战略放置和配置是最大化能源生产和最小化运营成本的关键因素。地理空间数据使利益相关者能够进行详细的涡轮放置,密度和容量分析。因此,可再生能源行业越来越多地转向数字双胞胎,以增强风力涡轮机的运行和管理并减轻失败的风险。通过整合来自各种来源的数据并分析最新趋势,利益相关者认识到数字双胞胎革新涡轮机维持和性能优化的潜力。通过连续捕获传感器的数据和监视源,数字双技术使利益相关者能够通过识别涡轮机行为的预警信号和异常来预测和防止故障发生故障。通过添加机器学习算法,数字双胞胎可以预测维护需求,并可以帮助最大化能源生产。这项新技术,可实现3D
该项目的目的是使用中介平台和技术解决方案来监控和保护集装箱运输。我们的愿望是协调计划运输计划的制定(从开始到结束),确保其物理和管理监控;并根据提供的可追溯性信息确保实时合规性(并采取可能的干预措施来防止故障和任何失败风险)。我们的平台将由各种现有信息系统(港口系统、运输和港口牵引软件解决方案等)提供支持,并将受益于现场信息反馈(GPS/GPRS信标、车载IT、RFID……)并将是安全的。该平台的安全和互联社区维度将允许链中不同参与者之间更好的同步,并承担公认的责任。链条中的不同环节(例如,RFID 将促进港口码头的交换)以及整个运输链(多式联运的完整可追溯性)都将获得生产力收益。
摘要 自 2000 年代初以来,许多飞机驾驶舱就已使用交互式驾驶舱,但即使在最新的飞机中,交互的使用仍然仅限于非关键功能。事实上,设计这样的交互式系统仍然是一个挑战,而且它们的设计尚未达到关键功能所需的设计保证水平。在交互式驾驶舱中,交互通过图形输入设备和键盘进行(例如空客系列中的键盘光标控制单元),而用户界面 (UI) 的行为必须符合 ARINC 661 标准中定义的规范。本文提出的工具支持的三重方法提出了提高交互式系统保证水平的方法。该方法包括用于描述交互系统每个组件的正式描述技术(检测和预防开发故障)、专用于交互系统组件的命令和监控技术(检测自然故障)以及隔离运行时环境(防止故障传播)我们报告了使用此方法实现的飞行控制单元 (FCU) 面板,其灵感来自 A380 的 FCU。
除了对维护计划进行严格评估外,许多化学过程工业 (CPI) 公司还用最新技术更换故障或过时的设备。但是,新技术只能使无效的维护计划变得更加无效。维护和可靠性计划的目标是实现维护活动的适当平衡(主要是那些旨在识别即将发生的故障的活动),以便及时采取纠正措施。工厂的最佳维护和可靠性计划可在正确的时间为正确的资产提供正确的维护。经过多年的运营,许多 CPI 工厂忘记了其维护计划的主要目标。例如,在经历了罕见的设备故障后,工厂开始频繁检查,以防止故障再次发生,这对维护人员来说是一个沉重的负担。因此,维护计划从协调和深思熟虑的预防行为转变为下意识的反应行为。通过了解哪些资产最重要(正确的资产),应采取哪些措施来恢复或维护这些资产的固有可靠性(正确的维护),以及应以何种频率采取这些行动(正确的时间),维护组织可以变得更有效、更高效——并且通常可以显著降低成本。本文探讨了 CPI 中的工厂维护组织如何重新评估和重组其维护和可靠性计划以纳入行业最佳实践。建立或重新建立维护和可靠性计划涉及以下基本步骤:
摘要 — 部署在北极苔原 (AT) 等资源匮乏环境中的信息物理系统面临极端条件。部署在这种环境中的节点必须谨慎管理有限的能源预算,迫使它们交替进行长时间的睡眠和短暂的正常运行时间。在正常运行时间内,节点可以通过向其他节点提供服务来协作进行数据交换或计算。在节点上部署或更新此类服务需要协调以防止故障(例如,发送新的/更新的 API、等待服务激活/停用等)。在正常运行时间较短的 CPS 中,由于通信机会较少,这种协调可能会耗能。本文根据不同的 CPS 配置(即节点数量、正常运行时间长度、无线电技术或中继节点可用性)评估和研究节点在部署或更新任务协调期间的能耗。结果表明,在节点专门唤醒以进行部署/更新的情况下,能耗较高。结果表明,在与现有正常运行时间重叠(即保留用于观察活动)的同时执行适应任务是有益的。本文还评估和研究了节点的正常运行时间和中继节点可用性如何影响能耗。增加正常运行时间可以减少能耗,最高可达 12%。使用可用的中继节点进行通信可将能耗降低 47% 至 99%。索引术语 —CPS、部署、更新、协调、Tundra、能耗
使用固态霍尔传感器阵列对小口径管道系统中的涡流进行实时可视化的回顾 J. Lee、C. S. Angani、J. Kim、M. Le,朝鲜大学,韩国 Hwa Sik Do,韩国电力公司,韩国 摘要 小口径管道系统是核电站 (NPP) 热交换器的重要组成部分,例如蒸汽发生器 (SG),其中的压力和温度非常高。这些条件会促使裂纹的产生和快速扩展,从而降低管道质量并威胁系统的完整性。几十年来,人们开发和改进了不同的 NDE 系统和探头,以应用于 SG 评估,例如用于实时检查裂纹的线轴探头、电动旋转饼线圈、X 探头和磁性摄像机。磁相机由固态磁场传感器阵列组成。根据传感器阵列的排列方式,开发了不同类型的传感器阵列,并对其进行了分类,以用于不同的应用,例如线性集成霍尔传感器阵列 (LIHaS)、区域型集成霍尔传感器阵列 (AIHaS)、线轴型集成霍尔传感器阵列 (BIHaS) 和圆柱型集成霍尔传感器阵列 (CIHaS)。本研究回顾了用于评估 SG 缺陷的线轴型磁相机的开发。使用霍尔传感器阵列可以提供具有高空间分辨率的大面积检查。传感器的高空间分辨率优势使得裂纹评估变得简单可靠。所提出的磁传感器阵列用于检测小口径管道的内径 (ID)、外径 (OD) 和周向应力腐蚀裂纹。准备了两种样品,铜和钛合金,以验证磁相机的有效性。成功检测到由于应力腐蚀裂纹引起的扭曲磁场图像并估计了裂纹体积。结果表明,该技术可以成为核电站中 SG 的无损检测的潜在工具。简介 管道结构在大型工业结构中起着关键作用,例如发电厂、石化厂、石油炼油厂和天然气加工厂 [1]。例如,用作核电站热交换器的小口径管道系统。SG 是核电站最关键的部件,它们在高温和高压等极其恶劣的条件下运行,这些条件往往会加速流动腐蚀 (FAC)、应力腐蚀开裂 (SCC) [2]。小由此可能引发裂纹,并可能导致灾难性故障或工厂紧急停机。因此,为了确定结构的可靠性和经济可行性,NDT 是检测和评估结构损坏程度的有效技术。因此,快速准确地检查管道中的裂纹或缺陷对于防止故障非常必要。SG 通常采用奥氏体镍铬基高温合金和非铁磁性钛合金制造。通常,核电站安装 2 至 4 套 SG 管,每套由 3,000 至 16,000 根管组成,SG 直径约为 20 毫米,长度约为 21 米 [3, 4]。几十年来,涡流检测 (ECT) 已可靠地应用于无损检测领域,线轴探头已成为 SG 和热交换器管道常规检查的行业标准 [5, 6]。线轴探头非常可靠,可用于量化体积缺陷,例如微动磨损和点蚀,相反,它们不适合检测周向裂纹 [7]。此外,ECT 需要很高的检查技能来分析和评估数据 [8, 9]。
社会中的人工智能伦理 Emma Johnson* a、Eloy Parrilla a 和 Austin Burg b a 北卡罗来纳州立大学工程学院工业与系统工程系,北卡罗来纳州罗利市 b 北卡罗来纳州立大学工程学院计算机科学系,北卡罗来纳州罗利市 https://doi.org/10.33697/ajur.2023.070 学生:ekjohns3@ncsu.edu*、ehparril@ncsu.edu、acburg@ncsu.edu 导师:Chang S. Nam,csnam@ncsu.edu 摘要 随着新技术每天都向公众展示,并旨在将其融入社会,人工智能 (AI) 变得越来越普遍。然而,这些系统并不完美,并且已知会导致影响众多人的故障。本研究旨在探索人工智能在社会设计和实施过程中如何遵循道德准则。研究了三种伦理理论、九项人工智能伦理原则以及代理、行为、后果 (ADC) 模型,以分析涉及人工智能的失败。当系统未能遵循所列模型时,就会创建一套完善的道德原则。通过分析失败,我们了解了如何防止类似事件发生。此外,还展示了道德作为人工智能编程一部分的重要性,并提出了未来将道德纳入人工智能的建议。由于涉及人工智能的事件发生的性质,整篇论文都特别使用了“失败”一词。这些事件不一定是“意外”,因为人工智能本来就是以某种方式行动的,但这些事件也不是“故障”,因为人工智能示例内部并未受到损害。出于这些原因,使用了含义更广的术语“失败”。关键词 伦理;人工智能;代理-行为-后果 (ADC) 模型;人工智能原则;美德伦理;义务论;结果主义;人工智能系统 简介 人工智能 (AI) 在社会中越来越普遍。随着其影响力越来越大,了解如何避免 AI 缺陷对于未来开发高质量应用程序至关重要。详细介绍了与 AI 相关的三个当代失败和故障示例。分析了这些示例与 AI 中的伦理原则、三种伦理理论和代理行为后果模型 (ADC 模型) 的关系。讨论和分析将有助于更好地理解 AI 中的伦理,并提供有用的社会应用。在整个研究过程中,我们确定了每次故障是如何发生的,以及将来如何防止故障。提出了一个由多个步骤组成的系统,旨在确保人工智能系统保持合乎道德规范。希望这个模型能够让人们更好地理解人工智能犯错的原因,以便让知识带来更好的结果并防止人工智能故障。方法和程序 对集成人工智能的产品的需求日益增长。这种需求带来了确保人工智能行为合乎道德的需要。人工智能是一个无需直接人工输入即可运行并完成指定任务的系统。1,2 这九项原则也与三种伦理理论的各个方面有关。由于人工智能不具备与人类相同的道德和伦理能力,因此人工智能总是有可能无意中违反道德界限。为了确定人工智能的行为是否合乎道德,我们探索了三种用于确定人类道德的伦理理论:美德伦理学、义务论和结果主义。此外,我们还使用了 Dubljeviý 提出的九项人工智能伦理原则,即“公平和非歧视”、“隐私、安全和保障”、“人类对技术的控制”、“透明度和可解释性”、“问责制”、“促进人类价值观”、“职业责任”和“可持续发展”。2 使用这些指南,对三起人工智能失败进行了案例研究,详细说明了它们如何违反人工智能中的特定伦理原则。进行了分析,以展示如何使用 ADC 模型在未来避免类似事件。伦理理论 研究了三种用于评估情况的伦理和道德的著名伦理理论。这三种理论是美德伦理学、义务论和结果主义。
变电站电池充电器在确保电动系统中必需电气系统的连续性中起着至关重要的作用。无法维持此供应会导致设备和人员损坏。DC系统包括高压工业/实用工具变电站的最重要组成部分,为保护设备和高压组件提供了能量,从而可以安全地隔离电气故障。通常,变电站电池充电器位于密封或洪水泛滥的细胞库中,在正常操作过程中可提供最小的电流。连续的负载电流在电池上保持恒定电荷,而充电器则在必要时提供额外的电流。失败的充电器或跳闸系统表示需要有效维护和潜在升级。电池充电系统平均最多可以持续8小时,可调节持续时间适合安装或应用要求。选择正确的充电器对于确保电池系统的寿命至关重要。Acrabatt变电站电池充电器系统通过提供可调节,可访问且灵活的解决方案来解决常见的设计问题,例如改造安装和维护复杂性。该系统具有带有数字显示的多功能警报,可轻松编程,并可以使用其他输出模块集成到SCADA或监视系统中。它的19英寸机架设计包括可调高的组件,可移动的侧面板和模块化电缆输入选项,使安装和修改更有效,更具成本效益。它符合ENA标准,其所有零件均经过认证。Acrabatt变电站电池充电器系统是一种可靠,负担得起的解决方案。如果您有兴趣了解有关此系统的更多信息,请与我们联系以获取更多信息。这项技术在电气传输和分销网络中起着至关重要的作用。有关其他应用程序,请参见变电站(主要文章)。变电站是电气发电,传输和分配系统的一部分。它将电压水平从高低转换为低,反之亦然,在两者之间执行各种基本功能。从发电厂到消费者,电能通常以不同电压水平的几个变电站流动。一个典型的变电站包括调节高传输电压和较低分布电压之间的电压水平,或者两个不同的传输电压满足的变压器。它们是我们基础设施的基本组成部分。仅在美国就有大约55,000个变电站。这些设施可能归电气公用事业或大型工业/商业客户所有。通常,它们依赖于远程SCADA的监督和控制,它们会无人看管。术语“变电站”来自一个尚未基于网格的时代。随着中央电站的扩展,较小的一代工厂转化为配电站,从较大的工厂接收能源供应,而不是使用自己的发电机。最初的变电站仅连接到一个发电站,并且本质上是该电站的子公司。Nixon等。Nixon等。可以由承包商或电气实用程序本身设计和建造。最常见的是,该公用事业公司在雇用承包商进行实际建设时处理工程和采购。构建变电站的关键限制包括土地可用性和成本,施工时间限制,运输限制以及需要快速将变电站在线携带。预制通常用于降低建筑成本。变电站可能需要偶尔关闭,但是公用事业公司试图简短地停电。它们对于连接电网或转换电压以确保电力的有效传输和分配至关重要。变电站可以加强电压以进行长距离传输,减少局部分布或将电流从AC转换为DC。即使是最简单的变电站也具有高压开关以进行故障间隙或维护,而较大的变电站可能包括变压器,电压控制设备和复杂的保护设备。一些现代化的变电站遵循IEC 61850等国际标准。分配变电站通常通过降低电压水平将功率从传输系统传输到本地分销网络。这允许电力有效地交付给房屋和企业,而无需直接连接到主要传输网络。相反,他们使用沿街道运行的进料器以中型电压(通常在2.4 kV至33 kV之间)提供电源,具体取决于所服务面积。这些变电站在确保向全球社区的可靠和高效的电力供应方面起着至关重要的作用。分配变电站是电网中电压调节的关键点,尤其是在市中心地区具有高压开关系统复杂变电站的大城市。通常,相应的变电站在低压侧具有开关,一个变压器和最小设施。在诸如风电场或光伏电台之类的分布式生成项目中,收集器变电站用于将电网提高到传输水平。这些变电站还可以提供风电场的功率因数校正,计量和控制。一些例子包括德国的Brauweiler和捷克共和国的Hradec,它们从附近的褐煤燃料植物中收集电力。如果不需要变压器,则变电站是一个开关站,在单个电压级别工作而无需转换电压。切换站用作收集器和分配点,通常用于在故障期间将电流转换为备份线或并行化电路。它们可能被称为切换场,位于电站附近,发电机在院子里提供电力,而传输线则从另一侧的馈线总线拿出电源。变电站的关键功能是切换,连接和断开传输线或往返系统的组件,可以计划或计划外事件。公司旨在在执行维护时保持电力系统的运行,例如添加或删除输电线路或变压器,以确保供应的可靠性。所有工作,从常规测试到构建新变电站,都应使用仍在运行的系统进行。这包括由传输线或其他组件故障引起的计划外的切换事件,例如被雷击或大风吹向塔的线。切换站迅速隔离系统故障,保护设备免受进一步损坏并保持电网中的稳定性。电动铁路还使用定量(通常是分布变电站)进行电流类型的转换,用于直流列车或旋转转换器的整流器,用于与公共网格不同频率的交流电交流。移动变电站的设计定为在公共道路上的旅行,用于自然灾害或战争期间的临时备份。通常,它们的评级低于永久装置,并且由于道路旅行限制,可能会以多个单位建造。变电站设计优先考虑最小化成本,同时确保功率可用性,可靠性和未来变化以及可能的位置,包括室外,室内,地下或组合这些位置。在计划变电站布局时,要考虑环境影响,安全性和扩展潜力等因素至关重要。该站点必须能够适应未来的负载增长或增加传输,并减轻对环境(例如排水,噪声和交通)的影响。理想情况下,变电站应集中位于其分布区域内,以确保有效的电源。安全性也是至关重要的,采取了防止未经授权访问并保护人员和设备免受电气危害的措施。土杆可用于增强较低的电阻接地。要开始设计变电站布局,准备了一个单线图,说明了开关和保护布置,以及传入的供应线和传出输电线路。此图通常具有主元素,例如线条,开关,断路器和变压器,其排列与实际站点布局相似。传入线通常具有断开的开关和断路器,有些情况只有一个或另一个。断开开关通过不中断负载电流提供隔离,而断路器可以防止故障电流,并且当电源以错误的方向流动时可以开/关。大断层电流触发电流变压器绊倒断路器,断开负载并将故障点与系统的其余部分隔离。开关和断路器都可以在变电站内本地操作,也可以从控制中心进行远程操作。使用高架传输线,由于雷电和切换潮可能会导致绝缘故障,因此使用线路入口引导者来保护设备。绝缘协调研究确保设备故障和停电最小。下一阶段涉及公共汽车,将电压线连接到一个或多个总线的母线集。开关,断路器和公共汽车的排列会影响变电站的成本和可靠性。对于关键变电站,环形总线,双总线或“断路器和半”设置,可以用于防止单一断路器故障时电源中断。变电站设计必须平衡缩小足迹与维护易于维护。这允许在维护和维修期间将变电站的一部分脱离。较小的工业变电站由于其最小的负载要求而可能具有有限的开关功能。变电站通常采用安全功能来最大程度地减少工人的电气危害,例如将活导体与裸露的设备分开或使用屏幕保持安全距离。最小清除标准根据管辖权或公司要求而有所不同,更高的电压需要更大的许可。接地垫或网格通常安装在地下0.5-0.6米处,以进行接地,以防止意外重新加强电路。变电站围栏通常至少高2米,保护公众和雇员免受电气危害和故意破坏。变电站包含一系列设备,包括开关,保护,控制设备,变压器和断路器,用于中断短路或过载电流。较小的配电站由于容量降低而可能具有更少的组件。分配电路依赖于居住者断路器或保险丝进行保护。变电站通常不是房屋发电机,但可能具有电容器,电压调节器和反应堆。这些设施可以在围栏,地下或特殊用途的建筑物中找到,其中一些高层建筑物具有多个室内变电站。室内变电站经常在城市地区使用,以最大程度地减少变形金刚中的噪声,增强外观或从极端气候条件或污染中的盾牌开关柜。变电站经常在电气设备之间使用母线作为导体。母线可以是铝制管3-6英寸厚的铝管或电线(应变总线)。室外结构包括木杆,晶格金属塔和管状金属变种,钢晶格塔可为传输线和设备提供低成本的支撑,并在外观不关心的区域。低调变电站可以在外观至关重要的郊区指定。室内变电站可以在高电压下采用气体绝缘变电站(GIS)的形式,或在较低电压下使用金属封闭或金属粘合的开关设备。城市和郊区的室内变电站通常在外面结束,以与周围建筑物融合在一起。紧凑的变电站是内置在金属外壳中的户外设施,其设备相互靠近,以最大程度地减少占地面积的尺寸。高压断路器通常会中断变电站设备中的电流流,从而处理正常,过度,异常或继电器触发的方案。AIS(空气绝缘开关设备)和GIS(气体绝缘开关设备)是当导体分离在断路器中时,用于熄灭功率弧的最常见技术。虽然AIS是最便宜的绝缘子,并且最容易修改,但它占据了更多空间,并将设备暴露于外部环境。但是,它需要在地震活性区域进行额外的支撑,并且比GIS发射更多的电磁场和噪声。GIS仅需要AIS所占的土地面积的10-20%,这可能会节省收购成本。为了优化施工过程,可以在利用其功率的地区安装GIS(气体绝缘变电站),从而可节省大量成本。这种接近允许降低电缆和民用建筑成本。此外,GIS可以替换AIS(空气绝缘开关设备),而无需额外的土地面积,如果电源需求增加。此外,GIS设备通常安装在封闭的建筑物中,可保护其免受污染和盐等环境因素的侵害。在维护成本方面,除非用于切换目的,否则GIS变电站几乎不需要维护,在这种情况下,成本可能相对较低甚至零几年。但是,SF6(硫六氟化物)断路器确实需要加热器在极度冷的温度下正常运行。其他选项包括石油绝缘(OCB)和真空绝缘(VCB)变电站,每个变电站都有自己的利益和缺点。隐居者与断路器相似,但可能会更具成本效益,因为它们不需要单独的保护性继电器。它们通常用于配电系统中,并且随着时间的推移超过一定级别时,可以编程为行程。电容器库用于变电站,以平衡电感载荷的当前抽奖与其反应载荷,有助于减少由于电压下降而导致的系统损耗,或者通过导体启用额外的电力传输。较大的变电站通常具有控制,控制和保护设备的控制室,这些设备通常包括保护性继电器,仪表和断路器。石油变压器已汇合了区域,以防止漏油或火灾。变电站内的控制室配备了通信系统,备份电池和数据记录器,可捕获有关变电站操作的详细信息,尤其是在异常事件中,以帮助后期重建。这些控制室由气候控制,以确保该设备的可靠操作。为了解决间歇性可再生能源(如风能或太阳能)的电力激增,需要其他设备。大多数变压器作为热量和噪声而失去了很大一部分的输入,而不管负载如何,铁损耗是恒定的,而铜和辅助损失与电流平方成正比。为了减少噪音,通常在设备周围建造变压器外壳,以后可以在需要时添加。防火墙围绕变压器建造,以阻止火灾蔓延,并带有用于消防车辆的指定路径。变电站维护涉及使用红外扫描和溶解气体分析等方法来预测维护需求和潜在危险,涉及检查,数据收集和日常计划工作。红外技术检测到表明电能转化为热量的热点,而溶解的气体分析有助于确定何时进行机油隔离的变压器需要过滤或更换油,也检测到其他问题。早期的变电站依赖于手动切换和数据收集,但是随着分销网络变得更加复杂,自动化对于从中心点进行监督和控制所必需。电动变电站是现代电网的关键组成部分,可以有效地传输和向消费者发电。已经使用了各种通信方法,包括专用电线,电源线载体,微波无线电,光纤电缆和有线遥控电路,以及标准化协议(例如DNP3,IEC 61850),以及MODBUS以及MODBUS促进设备和主管中心之间的通信。这些变电站设施通常位于主要电力线附近,并用作长距离传输电源的枢纽。电动变电站的设计和布局可能会取决于位置,负载能力和环境考虑因素等因素。某些变电站是地下或专门设计的结构,以最大程度地减少视觉影响和环境破坏。最近对太平洋西北电站的袭击引起了人们对美国电网脆弱性的担忧。在回应中,专家建议采取积极的措施来保护关键基础设施免受潜在威胁。智能网格的开发也在推动变电站设计中的创新,从而在功率传输和分配方面提高了效率和灵活性。这包括使用高级技术,例如实时监控和控制系统,以及为高性能应用设计的更有效的变电站。专家强调了考虑安全性和安全性的设计变电站的重要性,同时还考虑了环境影响,美学和社区关系等因素。有效的变电站设计需要一种多学科的方法,该方法考虑了技术和非技术考虑。总体而言,电动变电站在维持现代电网的可靠性和效率方面起着至关重要的作用。随着电力需求的不断增长,创新的设计和技术对于确保安全有效地传输电力至关重要。注意:我试图从原始文本中保留主要的想法和概念,同时简化了语言并重组结构,以易于阅读。列出的资料是Blume的书(2016年)和Finn的出版物(2019),都重点介绍了电力系统。的研究,但由于缺少目标信息而导致引用错误。这些参考文献突出了变电站计划和电力系统基础知识中的关键概念,这表明它们与理解主题有关。