如何申请 主席和主管当局转发的规定格式的完整申请表应在 2023 年 7 月 5 日或之前通过电子邮件发送至新德里 ICAR-IARI 昆虫学部课程协调员,电子邮件 ID:labnumber54@gmail.com。 申请表可从 IARI 网站 https://www.iari.res.in 或 NAHEP-CAAST 网站(https://nahep-caast.iari.res.in)下载。 选定的候选人将在 2023 年 7 月 25 日之前通过邮件通知。 谁可以参加 ICAR 视为大学/SAU/CAU/CU/其他 UGC 认可的大学和研究机构的硕士和博士生有资格申请。 该培训计划最多选拔 25 名参与者。 注册费:无需支付注册费;该计划完全由 NAHEP-CAAST TRAVEL 赞助。 组织者将根据规范提供旅行津贴。 入选学员仅有资格获得卧铺/AC III 级票。 学生应自行安排在所有工作日上午 9:00 到达培训地点。 餐饮和住宿 将为外部学生提供餐饮和住宿。 课程期间将提供茶和小吃,费用将从培训预算中支付。 重要日期: 培训日期:2023 年 9 月 12 日至 22 日 申请截止日期:2023 年 7 月 5 日 选拔通知:2023 年 7 月 25 日。
第1部分理解和破坏害虫•1。对蓟马和其他小型飞行昆虫的视力和嗅觉的理解,以增强生物控制:新西兰的植物和食品研究; •2。昆虫的基因工程以抑制虫害繁殖:美国北卡罗来纳州立大学的麦克斯·斯科特(Max Scott); •3。开发基于植物的昆虫生物防治剂:Azucena Gonzalez-Coloma,CSIC,西班牙; •4。基于神经肽的生物防治剂的开发用于管理害虫:英国格拉斯哥大学Shireen Davies; •5。使用基因沉默(RNA干扰)技术产生安全的杀虫化合物:意大利Enea的Salvatore Arpaia; •6。理解反对害虫攻击的植物防御:美国路易斯安那州立大学的迈克尔·斯托特;第2部分改善了生物防治产品开发和使用•7。制定生物防治剂以进行植物保护的钥匙问题:琳达·马斯卡特(Linda Muskat),应用科学大学 - 德国比勒菲尔德(Bielefeld); •8,促进新的生物防治产品来控制害虫:新西兰林肯大学Travis Glare; •9,用于害虫控制的生物防治剂的应用技术开发:奥地利奥地利理工学院的Claudia Preininger; •10。对害虫的生物防治剂进行改进:美国环境保护局的香农·博尔赫斯,生物农药和污染预防司;
Joanna Szczurkowska, 1,8 Seong-Il Lee, 1,8 Alan Guo, 1 Andrzej W. Cwetsch, 4,5 Tanvir Khan, 1 Sneha Rao, 1 Gerd Walz, 2 Tobias B. Huber, 3 Laura Cancedda, 4,6 Sophie Pautot, 7 and Maya Shelly 1,9, * 1 Department of Neurobiology and行为,Stony Brook大学,Stony Brook,纽约州11794-5230,美国2医学系,大学医学中心弗莱堡大学医学院,弗莱堡大学医学院,弗莱堡大学,弗莱堡IM BREISGAU,德国3 III。Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 4 Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, Genova, Italy 5 Universita` degli Studi di Genova, Genova, Italy 6 Dulbecco Telethon Institute, Italy 7 ITAV-CNRS USR 3505, Toulouse 31106,法国8这些作者同等贡献9铅联系 *通信:maya.shelly@stonybrook.edu https://doi.org/10.1016/j.cellerep.2020.03.03.083
对农作物保护化学杀真菌剂的依赖引起了环境和健康的关注,促使需要可持续和环保的替代品。使用拮抗微生物(如Paenibacillus Terrae B6A)的生物控制,为管理疾病的疾病提供了一种环保的方法。该研究的目的是评估P. terrae B6a作为针对增生型PPRI fpri 31301的生物防治剂的功效,重点是其体外拮抗活性,其对真菌形态和酶促含量的影响及其对减轻病原体诱导脂肪诱导脂肪植物的胁迫的能力。使用标准方案进行了B6a对F. forperatum的体外拮抗活性。 planta分析中的是通过用1×10 6 CFU/mL的B6A生物制成玉米种子进行的,并用F. propiferatum感染了7天。 使用分光光度计方法进行了生物染色玉米根的生化,酶和抗氧化剂活性。 使用双重培养和细胞内粗制的体外拮抗测定法分别抑制了F. propiferatum的70.15和71.64%。 此外,B6A改变了f的形态和菌丝结构。 在高分辨率扫描电子显微镜(HR-SEM)下增殖。 这是由于几丁质含量(48.03%)的增加(p <0.05)和细胞外多糖含量(48.99%)和β-1,4-葡萄糖酶活性(42.32%)的降低(P <0.05)。 玉米种子的感染带有F. ropiferatum,导致根长度显着降低(P <0.05)(37%)。使用标准方案进行了B6a对F. forperatum的体外拮抗活性。是通过用1×10 6 CFU/mL的B6A生物制成玉米种子进行的,并用F. propiferatum感染了7天。使用分光光度计方法进行了生物染色玉米根的生化,酶和抗氧化剂活性。使用双重培养和细胞内粗制的体外拮抗测定法分别抑制了F. propiferatum的70.15和71.64%。 此外,B6A改变了f的形态和菌丝结构。 在高分辨率扫描电子显微镜(HR-SEM)下增殖。 这是由于几丁质含量(48.03%)的增加(p <0.05)和细胞外多糖含量(48.99%)和β-1,4-葡萄糖酶活性(42.32%)的降低(P <0.05)。 玉米种子的感染带有F. ropiferatum,导致根长度显着降低(P <0.05)(37%)。使用双重培养和细胞内粗制的体外拮抗测定法分别抑制了F. propiferatum的70.15和71.64%。此外,B6A改变了f的形态和菌丝结构。在高分辨率扫描电子显微镜(HR-SEM)下增殖。这是由于几丁质含量(48.03%)的增加(p <0.05)和细胞外多糖含量(48.99%)和β-1,4-葡萄糖酶活性(42.32%)的降低(P <0.05)。玉米种子的感染带有F. ropiferatum,导致根长度显着降低(P <0.05)(37%)。相对于对照和感染种子,用B6A生物抗化显示根长度(P <0.05),在根长度(44.99%)中,反应性氧(ROS)诱导的氧化损伤显着降低(P <0.05)。总而言之,P。terrae B6a可能是良好的生物防治候选者,并且可以被配制成生物 - 绞霉剂,以控制经济上重要的农作物中的F. propieratum和其他相关的植物病。
CD20抗原是一种跨膜蛋白,以前被描述为存在于广泛的正常和肿瘤B细胞上的PAN-B细胞标记。还发现了一小部分CD3+ T细胞表达CD20,这是Hultin等人首次报道的。在健康的外周血中(1)。Algino等。急性淋巴细胞白血病(ALL)和慢性淋巴细胞性白血病(CLL)(2)患者的T细胞识别CD20(2)。 后一个报告显示,在某些偶尔的T细胞肿瘤病例中,CD20在T细胞上以异常现象出现(3,4)。 在类风湿关节炎患者中也可以看到T细胞上的 CD20,但发现这被认为是流动细胞仪(FCM)的伪像(5)。 Schuh等。 (6)在胸腺,骨髓和继发性淋巴器官中描述了它们,并且在多发性硬化症患者中也发现了它们在脑脊液中发现它们。 de Bruyn等。 (7)将它们描述为腹膜腹水流体中的TC1效应子记忆T细胞,患有卵巢癌患者。 关于CD20+ T细胞的起源,出现了以下假设。 根据假设,T细胞上的CD20分子是血液样本的离体储存的结果,该血样导致T-和B细胞之间的抗原交换(8)。 另一种方法是T细胞上的CD20表达是特定受体细胞介导的过程,称为trogococytosis或“剃须反应”。 在这种分子重组中 - 也称为“免疫突触 - ” T细胞可以从抗原呈递细胞中提取CD20,最终将其呈现在自己的表面上(7,9)。急性淋巴细胞白血病(ALL)和慢性淋巴细胞性白血病(CLL)(2)患者的T细胞识别CD20(2)。后一个报告显示,在某些偶尔的T细胞肿瘤病例中,CD20在T细胞上以异常现象出现(3,4)。CD20,但发现这被认为是流动细胞仪(FCM)的伪像(5)。Schuh等。(6)在胸腺,骨髓和继发性淋巴器官中描述了它们,并且在多发性硬化症患者中也发现了它们在脑脊液中发现它们。de Bruyn等。(7)将它们描述为腹膜腹水流体中的TC1效应子记忆T细胞,患有卵巢癌患者。关于CD20+ T细胞的起源,出现了以下假设。根据假设,T细胞上的CD20分子是血液样本的离体储存的结果,该血样导致T-和B细胞之间的抗原交换(8)。另一种方法是T细胞上的CD20表达是特定受体细胞介导的过程,称为trogococytosis或“剃须反应”。在这种分子重组中 - 也称为“免疫突触 - ” T细胞可以从抗原呈递细胞中提取CD20,最终将其呈现在自己的表面上(7,9)。相反,Schuh等人。(6)旨在澄清这些问题,因此在CD3+/CD19-/CD20+,CD3+/CD19-/CD20- T-Cells和CD3-/CD19+/CD20+/B细胞上进行了细胞分类实验,从健康个体的外围血液中进行了pcr,并在每个种群上都在其量度上均可在每个人群中进行量子。如所述,CD3+ CD19-CD20+细胞本身转录CD20。在我们关于血液恶性肿瘤的诊断工作期间,我们注意到骨髓增生综合征(MDS),MGUS和MM患者的CD20+ T细胞百分比升高。因此,在诊断MM样品中观察到最高比例,在某些情况下,这些细胞的比例在淋巴细胞中达到30-35%。将这些数据与对照骨髓比进行比较时,我们测量了
沿海地区在这项研究中表现出更强的非洲混合物,而北部也门也门地区的北部地区表明与阿拉伯和黎凡特有更紧密的遗传关系。在也门漫长而持续的内战中,这项研究发现,沿海和内陆分裂的历史基因组起源不同,这与当前冲突的划分线相处。
分类条形图,包括在四个基因座:16SV4上确定的前10个最丰富的属(或最低分类); 18SV1V2; 18SV8V9和RBCL用于水(A)和生物膜(B)样品。湖泊分为五个区域,与中部地区和西部(M&W),东部(E),西南(SW)和东南(SE)相对应。调色板不代表各个地块或样本类型之间的分类组,而是将大多数(蓝色)到最少(红色)的分类单元安排。每个湖泊的分类小号在图S5中。信用:环境DNA(2025)。doi:10.1002/edn3.70058
肾细胞癌(RCC)是一种恶性肿瘤,占成年癌症的3%,20% - 30%的患者在开始时被诊断为转移性RCC,而转移性RCC全身治疗的中位总生存期(OS)范围为16个月至16个月至50个月。免疫疗法是一种依赖于免疫细胞和肿瘤细胞特异性结合的新型疗法,可能是晚期肾细胞癌的潜在疗法。虽然已经在各种实体瘤中研究了嵌合抗原受体NK细胞(CAR-NK)疗法,但几个团队也报道了对其在RCC的应用的特定研究。在这篇综述中,我们介绍了NK细胞的细胞毒性机制,总结了RCC和NK细胞之间的联系,并对肾细胞癌Carcinaloma Car-NK治疗发布了新的见解。迄今为止,重点关注肾细胞癌和NK细胞的大多数研究仅声称NK细胞细胞毒性和NK细胞免疫抑制甚至免疫逃生的机制,但所涉及的分子也可能是肾细胞癌Carcinaroma carcinoma carcinoma car-NK疗法的有趣靶标。
3 UMR IGEPP,INRAE-Agrocampus Ouest-Université de Rennes 1,F-35600 Le Rheu,法国 摘要 由媒介害虫传播的植物病毒是全球粮食生产和安全面临的最重要威胁之一。增强天敌(寄生蜂和捕食者)的生物防治策略主要侧重于降低害虫密度的能力。相比之下,很少有研究研究天敌如何影响病毒在作物中的传播和发病率,尽管这些结果可以用作更可持续地管理病毒性疾病的杠杆。媒介传播的植物病毒可根据其传播方式分为三类:非持续传播病毒、半持续传播病毒和持续传播病毒,而媒介密度、适应性和运动被确定为病毒在作物中传播的主要驱动因素,它们对病毒流行病学的相对贡献也可能取决于传播方式和天敌的存在。综述的第一部分重点介绍了与媒介活动和密度有关的病毒传播动态。由于我们识别出每种植物病毒的不同模式,导致媒介特征变化的控制策略应根据目标病毒进行调整。然而,昆虫媒介的生物防治很少适应目标病毒的传播方式。因此,本综述的最后一部分探讨了天敌(寄生蜂和捕食者)预防每种植物病毒疫情爆发所需的条件。简而言之,如果与其他做法相结合,生物防治媒介以将病毒发病率保持在经济阈值以下是一种很有前途的方法,适用于持续传播的病毒,但对于非持续传播的病毒和半持续传播的病毒可能更难实现。关键词非持续传播病毒;持续传播病毒;病毒爆发;保护性生物防治;捕食者;寄生蜂关键信息
摘要 酵母是黄曲霉的潜在生物防治剂,黄曲霉是一种产生黄曲霉毒素的真菌,存在于肉豆蔻等多种农产品中。本研究旨在从肉豆蔻(种子、果肉和叶子)中获取酵母分离株,对其进行特性分析,并确定其对黄曲霉的拮抗作用。通过双培养法测定了对黄曲霉的拮抗活性。此外,还分析了这些拮抗作用的可能机制。结果表明,从肉豆蔻中成功分离出 51 株酵母分离株。抑制百分比分别为 47.25 ± 1.66%(分离株 DP 1341a)和 55.98 ± 1.31%(分离株 DP 1342),具有统计学意义(p < 0.05)。 DP 1341a分离株的拮抗机制与挥发性有机化合物的产生(32.79±1.01%)、几丁质分解指数(2.51±0.55)和重寄生有关,但与毒素活性无关。此外,DP 1342分离株产生挥发性有机化合物(54.33±3.13%),表现出毒素活性(2.74±0.22)并表现出重寄生,但没有表现出几丁质酶活性。分子鉴定表明,两株酵母分离株(DP 1341a和DP 1342)被鉴定为Pseudozyma hubeiensis,序列相似性> 99%。因此,所选酵母分离株P. hubeiensis DP 1341a和DP 1342可进一步开发为A. flavus的生物防治剂。这一发现也将有助于改进生物防治剂,使其成为一种环保且经济可行的疾病管理策略。关键词:拮抗剂:黄曲霉;肉豆蔻;湖北假酵母;酵母