II。 研究问题学术建议涉及个性化的研究计划,共享政策信息,跟踪学生的进步以及充当主要的支持联系[3]。 顾问经常在诸如高工作负载,知识不足,犹豫不决的学生以及跨不同系统中的分散信息等问题上挣扎,[4] [5]定义了对话代理或聊天机器人,作为对话系统,能够通过文本,语音或手势(包括手势)(包括手势语言)来理解和生成自然语言内容。 此定义强调了聊天机器人理解和响应自然语言的句子的能力。 [6]进一步强调,这些人工智能工具可以通过自动执行常规任务,合并信息,提供见解,以提高咨询效率和效率并提供学生支持来处理建议问题。II。研究问题学术建议涉及个性化的研究计划,共享政策信息,跟踪学生的进步以及充当主要的支持联系[3]。顾问经常在诸如高工作负载,知识不足,犹豫不决的学生以及跨不同系统中的分散信息等问题上挣扎,[4] [5]定义了对话代理或聊天机器人,作为对话系统,能够通过文本,语音或手势(包括手势)(包括手势语言)来理解和生成自然语言内容。此定义强调了聊天机器人理解和响应自然语言的句子的能力。[6]进一步强调,这些人工智能工具可以通过自动执行常规任务,合并信息,提供见解,以提高咨询效率和效率并提供学生支持来处理建议问题。
Julie Mango(Mangifera Indica L.)和Pawpaw(Carica Papaya L.)果汁用天然(姜,肉桂)和化学(苯甲酸钠,抗坏血酸)治疗。在冰箱(4°C)和室温(28°C)的8天存储期间,评估了这些防腐剂对朱莉芒果和帕普果汁的影响。用苯甲酸钠处理并储存在冰箱(4°C)和室温(28°C)的朱莉芒果果汁中的总细菌计数,范围为5.0×10 4到8.0×10 3 cfu/ml和5.0×10 3 cfu/ml和5.0×10 4到5.0×10 4至7.0×10 3 cfu/ml。用生姜和肉桂处理的朱莉芒果果汁中的总细菌数量,储存在冰箱(4°C)和室温(28°C)的范围为1.9×10 4到5.2×10 3 cfu/ml和1.9×10 4至5.0×10 4至5.0×10 3 cfu/ml。Total bacterial count in pawpaw fruit juice treated with ascorbic acid ranged from 5.2 × 10 4 to 7.0 × 10 3 CFU/ml and 5.3 × 10 4 to 6.0 × 10 3 CFU/ml for juice during storage at (4 °C) and room temperature (28 °C).While the total bacterial count in pawpaw fruit juice treated with ginger and cinnamon and stored at冰箱(4°C)和室温(28°C)分别在1.3×10 4到5.2×10 3 CFU/mL和1.9×10 4至5.1×10 3 CFU/mL。用苯甲酸钠和抗坏血酸处理朱莉芒果和帕普果汁,在8天的储存期间降低了果汁的细菌和真菌计数。感官分析结果表明,最不接受任何防腐剂的朱莉芒果和爪爪果汁。冰箱存储温度(4°C)很好,是水果生产者最推荐的温度。用二苯甲酸钠和抗坏血酸处理的朱莉芒果和爪子果汁中的真菌计数,然后存储在冰箱(4°C)和室温(28°C)的范围内,范围为2.9×10 4到4.0×4.0×4.0×10 3 cfu/ml,3.0×10 4至3.0×10 4至7.0×4.0×10 3 cfu/ml, CFU/mL和2.2×10 4至3.0×10 3 CFU/mL。
原子层沉积 (ALD) 是目前广泛应用的薄膜生长方法。它目前用于微电子和发光显示技术的工业制造工艺。由于可以生长致密、保形的薄膜,并且厚度可以得到完美控制,因此 ALD 有望用于许多其他应用领域,如能源、传感、生物材料和光子学。尽管关于其在防腐方面的应用报道很少,但事实已证明 ALD 的优良特性对该领域大有裨益。在简要回顾了 ALD 的原理以及主要参数对薄膜性能的影响之后,本报告试图展示该技术在减轻腐蚀方面的应用。本文回顾了在不同领域成功使用 ALD 来保护金属和非金属表面的各种实例。
在分析化学和各种药物领域的摘要中,分离技术被广泛用于研究混合物或复杂材料的特定化合物。一种这样的分离技术称为色谱。开发并验证了一种简单,快速且具有成本效益的TLC方法,用于定量确定药物和化妆品中的甲基对位替替替替替补替替替补替替替越。该方法采用了一个由乙酸乙酯 - 甲醇 - 水(80:10:10,v/v/v)组成的流动相,并显示出良好的线性(R2> 0.99),准确性(恢复95-105%),精度(RSD <2%)和特异性。检测和定量的极限分别为0.1μg和0.5μg。此TLC方法可用于质量控制和监管目的。关键字:薄层色谱,甲基对羟基苯甲酸酯,丙泊替户,定量测定,防腐剂。
Chimie ParisTech-CNRS,巴黎文理学院研究型大学,法国巴黎 为推动对海洋和海上潜在资源的评估和勘探,必须开展精心策划的小规模和大规模研究和工业努力,以提高材料的耐久性。在过去的几十年中,随着更环保的防腐解决方案的开发,人们提出了基于微生物的新兴技术,以延长结构金属的使用寿命。微生物可以以有利的方式影响腐蚀行为,即所谓的 MICI(微生物影响的腐蚀抑制),这一事实开辟了不同的研究方向。到目前为止,已经提出了不同的 MICI 机制,包括在金属表面形成阻隔膜、氧消耗、分泌抑制酶和通过生物矿化抑制腐蚀。有证据表明,微生物与金属表面相互作用的结果可以形成有效的保护层,从而提高金属的耐腐蚀性,这为我们的 MICOATEC 项目开发受自然启发的防腐解决方案的新方法奠定了基础 [1-5]。主要目标是将天然生物过程转化为非生物防腐技术过程,而无需复制生物膜本身或将活性生物化合物掺入涂层基质中。为了达到上述主要目标,需要了解微生物/金属相互作用自然形成的保护层的生长过程和化学物理特性。在此背景下,AA 5083 的几个样品因其耐腐蚀性而常用于海洋工业,它们已在热那亚户外实验海洋站 (GEMS) 浸泡了不同时间。目标是评估复杂海洋环境中存在的微生物多样性(细菌、藻类等)对腐蚀过程的影响,这些微生物多样性以各种方式影响腐蚀过程。经过 15 天、1 个月和 2 个月的暴露,对 AA 5083 的表面和界面进行了表征,结合 ToF-SIMS、XPS 和 SEM/EDX 等先进分析技术,以更全面地了解生物条件下保护层的化学成分和形成机理,从而了解其对铝合金耐腐蚀性的影响。这项工作得到了 ANR 的资助,属于 MICOATEC 项目 (ANR-19-CE08-0018)。[1] MJF Marques 等人,Eurocorr 会议记录,葡萄牙埃斯托里尔,9 月 1 日至 5 日(2013 年)[2] Navdeep K. Dhami 等人,微生物学前沿,4,外。 (2013) [3] MJF Marques 等人,Eurocorr 论文集,塞维利亚,西班牙,9 月 9-13 日(2019) [4] Z. Guo 等人,Frontiers in Microbiology,10,1111(2019) [5] Y. Shen 等人,Bioelectrochemistry,132,107408(2020) 2829 个字符(含空格)(最多 3000 个)
本研究探讨了生物基防腐剂作为食品保鲜中合成添加剂的更可持续、更健康的替代品的应用。介绍了这些天然防腐剂的历史发展,确定了利用植物和微生物衍生化合物的抗菌和抗氧化特性的重大创新。讨论和说明了一些核心理论和模型,这些理论和模型可有效延长保质期和提高食品安全性。这项研究揭示了大规模使用的关键障碍,包括高成本、可扩展性限制和严格的监管审批程序。评估了大规模生产二氧化硅气凝胶毯材料的障碍,并评估了克服这些障碍的策略,包括与监管机构的合作、纳米技术的应用以及成本降低技术,包括优化原材料采购和利用规模经济。合成防腐剂在性能、安全性和成本之间的权衡进行了比较,证明了生物基解决方案在健康和环境考虑很重要的应用中的优势。最后,该研究提出了未来的研究方向,即通过技术创新提高功效、降低成本和简化监管框架。这项研究为食品制造商、监管机构和消费者提供了切实可行的见解,帮助他们过渡到更可持续的保鲜系统。采用生物基防腐剂对公共卫生、行业使用和环境可持续性具有重大影响。
微生物生物转化是食品工业中用于增强食品的有益特性并延长其保质期的关键过程。本文回顾了微生物生物转化在食品防腐剂生产中的应用,并强调了其在改善营养特性,食品安全和可持续性中的作用。它讨论了各种化合物的合成,例如酶,酸和抗氧化剂及其对食物质量的影响。此外,该研究探讨了微生物生物转化的机制,提供了实际的例子,并讨论了与此过程相关的益处和挑战。微生物生物转化的未来研究方向概述了在包括食品,药品和农业在内的各个行业中的潜力。
草药和香料是天然防腐剂的另一个来源。常见的例子包括大蒜,姜,姜黄和肉桂。这些成分已在各种培养物中使用了几个世纪,不仅是为了风味,而且用于其抗菌特性。大蒜含有大蒜素,一种已知可以与细菌和真菌作斗争的化合物,而肉桂和姜黄则在防止食物中有害微生物的生长方面表现出了有效性。现在将这些天然物质纳入现代食品保存方法中,尤其是在有机和植物性食品行业中[4]。
亲爱的腐蚀专家们,有句俗话说得好,“只见树木不见森林”。最近,一位来自 EFC 会员协会的代表问了我几个简单的问题,这让我想起了这句话。作为 EFC 主席,我的主要职责是确定 EFC 需要在哪些方面发展并启动相应的流程。然而,我的大部分时间都花在签署文件、协商小型组织变革、解决日常琐事以及讨论个人问题上。没有多少时间可以鸟瞰 EFC。因此,当我被要求回答这些特定问题时,我感到非常振奋,您可以在本期 EFC 通讯中找到这些问题以及我的答案。让我只强调与腐蚀未来相关的一个方面。我是一个坚定的乐观主义者。范式正在缓慢但肯定地发生变化。社会不仅要求快速和立即的解决方案,而且要求可持续的解决方案。考虑整个生命越来越重要
需要对用于生产药品的受控环境制定完善的清洁和消毒程序,以防止这些药品受到微生物污染。无菌药品可能通过其药物成分、工艺用水、包装组件、生产环境、加工设备和生产操作员受到污染。现行良好生产规范 (cGMP) 强调建筑物和建筑材料的大小、设计、构造和位置,以及适当的物料流动,以方便清洁、维护和正确操作药品生产。所有 GMP 区域都应进行清洁;在需要控制环境生物负荷的区域也必须进行消毒,例如:起始和初级包装材料、中间产品或散装产品暴露于环境的区域以及无菌生产设施中。在生产环境中使用消毒剂时,应注意防止药品因消毒剂固有的毒性而被化学消毒剂污染。无菌处理的要求包括易于清洁的地板、墙壁和天花板,表面光滑无孔;颗粒、温度和湿度控制;以及清洁和消毒程序,以产生和维持无菌条件。清洁和消毒程序应达到规定的清洁度标准,控制产品的微生物污染,并旨在防止药物成分、产品接触表面和/或设备、包装材料以及最终药物产品的化学污染。这些原则也适用于非无菌剂型,其中微生物污染通过选择适当的药物成分、公用设施、制造环境、合理的设备清洁程序、专门配制以控制水活性的产品、加入合适的防腐剂和产品包装设计来控制。