“我们正在积极地使用以电动汽车为中心的产品和服务来塑造能源过渡:通过现在可用的双向充电功能,我们为客户的需求定制了一项新服务。他们不仅可以节省能源成本,而且还可以为能源的可持续使用做出重要贡献。双向充电将在将来的ID中将电动汽车转变为滚动储能单元。带有77 kWh电池(NET)的型号将能够使用双向充电功能在家中存储电力。VW还将能够激活已经收到ID后已经交付的车辆的功能。软件3.5通过更新。由于高存储容量,也可以在几个阴天的日子或傍晚落山并且光伏系统不再提供电力的傍晚时提供太阳能。这意味着客户可以自己决定何时想从公共电网中抽取能量或使用存储在车辆电池中的自我生成的电力。智能充电以稳定电网,并具有巧妙的电费和算法,如今已经有可能在可再生能源可恢复的能源时准确地为汽车充电。例如,由于没有消费者,因此不必关闭风力涡轮机。电动汽车可以将不需要的电力供电
摘要 无人机图像中的车辆检测和识别是一个复杂的问题,已用于不同的安全目的。这些图像的主要挑战是从斜角捕获的,并带来了一些挑战,例如不均匀的照明效果、退化、模糊、遮挡、能见度丧失等。此外,天气条件在引起安全问题方面起着至关重要的作用,并为收集的数据增加了另一个高水平的挑战。在过去的几十年里,人们采用了各种技术来检测和跟踪不同天气条件下的车辆。然而,由于缺乏可用数据,在大雪中检测车辆仍处于早期阶段。此外,还没有使用无人机 (UAV) 拍摄的真实图像在雪天检测车辆的研究。本研究旨在通过向科学界提供北欧地区不同环境和不同积雪条件下无人机拍摄的车辆数据来解决这一空白。数据涵盖不同的恶劣天气条件,如阴天降雪、低光照和低对比度条件、积雪不均、高亮度、阳光、新雪,以及温度远低于-0摄氏度。该研究还评估了常用物体检测方法(如 YOLOv8s、YOLOv5s 和 Faster RCNN)的性能。此外,还探索了数据增强技术,并提出了在此类场景中增强检测器性能的技术。代码和数据集将在 https://nvd.ltu-ai.dev 上提供
目视下降 (BO) 是指直升机在干旱气候下起飞或降落时,旋翼下洗气流扬起灰尘,然后旋翼叶片将灰尘带回,导致驾驶舱窗外能见度很低或完全没有能见度的情况。在雪地(白化目视下降)或水面上着陆或起飞也会出现类似情况。值得注意的是,机组人员通常将雪地条件下的目视下降称为“雪球”,以将这种特殊情况与大气目视下降区分开来,大气目视下降是由全向卷云形成、雾气或连续积雪表面的阴天或间歇性云层与积雪地形混合而引起的。一般而言,目视环境恶化 (DVE) 会导致飞行员依赖不充分的驾驶舱仪表、机上机组人员的呼叫以及天生的驾驶技能来成功执行 DVE 着陆。在 DVE 中飞行对旋翼机飞行员来说一直是一个挑战。由于北约一直在干旱气候下(例如伊拉克、非洲和阿富汗)作战,因此旋翼机故障 (RWB) 是大约 75% 的联军直升机事故的罪魁祸首。在 HFM-162 任务组结束时的 2013 年报告中,总结了每个派遣国因 DVE 导致的旋翼机事故。这些统计数据在此处提供,在某些情况下,已更新至 2016 年。提出了改进 RW 飞机的建议,以帮助减少飞机和人员伤亡。
DOI:https://dx.doi.org/10.30919/esee8c693 光伏/电池/超级电容器抽水系统的实验评估及其在多变天气条件下的潜力 Madhumita Das,1,* Asim Halder 1,# 和 Ratan Mandal,2,# 摘要 研究人员经常使用电池来消除太阳能抽水系统中天气变化的影响,因为天气变化会缩短电池寿命。超级电容器和电池储能技术相辅相成。超级电容器具有高功率密度,而电池具有高能量密度。超级电容器的集成可以增强光伏 (PV)/电池系统的性能。在这项工作中,使用离心泵在多变的天气条件下(晴天、多云天和多云天)对 PV/电池/超级电容器抽水系统进行了实验测试。实验使用 40 Wp 太阳能模块为 12 V、14.4 W 离心泵以及 12 V、9 Ahr 电池和 210 F、12 V 超级电容器组供电。演示了电池和超级电容器之间的电流分布。研究了阳光辐射波动对流量和电池/超级电容器充电放电特性的影响。该系统在部分阴天运行有效,从而提高了抽水系统的性能。该抽水系统提高了农业应用中光伏系统的效率。
贫穷。最近,由于气候破坏,旋风,干旱和洪水的形式受到气候破坏影响,这种情况正在恶化。可持续使用资源已成为每个食品供应链领域的一个问题。人们经常遭受粮食短缺的困扰:有些是由自然灾害造成的,而另一些则是由于存储设施不佳而导致收获后过多的损失。因此,通过保护技术减少收获后的损失是达到结束饥饿(SDG 2)并确保可持续消费和生产模式的重要一步(SDG 12)。因此,需要廉价和疗养的食物的实用方法。可以通过使用太阳能等可再生能源来大幅度降低农产品的收获后损失。本文提出了使用太阳能干燥的审查和可能性,重点是莫桑比克的小型农民的技术需求。在这项研究中,可以得出结论,太阳能干燥是保护农产品的最有效,最具可再生和可持续技术的最有效,可再生和可持续的技术之一。然而,在莫桑比克使用的太阳能干燥机仅在太阳辐射的存在下才有用,在夜晚或阴天中无用。为了实现炎热干燥,必须集成热量。这样,它可以引发减轻贫困,体面工作机会,经济增长和减少不平等的希望。关键字:气候变化;环境;保留;太阳烘干机;太阳能。RESUMO
本研究调查了伊拉克水力储存和太阳能相结合的综合系统的性能。设计了一个光伏水泵系统,将太阳能以水的形式储存在高度为 6 毫米的水箱中。这项研究评估了太阳辐射水平和泵送时间对确定储存能量的影响。在三月份的晴天,使用固定光伏板需要 175 分钟才能泵送总共 3400 升水,而使用跟踪器时,由于跟踪器的泵送能力增加,将相同数量的水注入水箱的时间缩短至 165 分钟。在同一个月的阴天,泵送相同数量的水需要 230 分钟。然后利用储存的水发电,根据所需的功率输出改变流速。最高发电量为 42 升/秒的水流速,发电量为 42.9 W,最低发电量为 23.2 W,最低水流速为 25 升/秒。此外,通过使用直流泵,该系统的成本效益得到提高,无需逆变器或电池即可使用。这些发现为水力储存和太阳能发电系统的整合提供了很好的理解,为伊拉克的可持续能源发电提供了潜在的解决方案。
摘要:锂离子(Li-ion)电池和超级电容器(SCS)的潜力,可以在光伏电压反向渗透膜(PV-Membrane(PV-Membrane)上进行高旋转分辨率(一个s),以高旋转分辨率(一个s)来克服高旋转分辨率(一个S)的长期和短期(几分钟)太阳辐照度弹性。使用合成咸水(5-g/L氯化钠)进行的,具有不同的电池容量(100、70、50、40、30和20 AH),以评估降低储能能力的效果。在SCS和电池之间进行了比较,以确定“部分阴天”的系统性能。带有充满电的电池,平均特定能源消耗(SEC)为4 kWh/m 3。与无电池系统相比,每日水的产量从663升提高到767 L(增加16%),平均电导率从310 µs/cm降至274 µs/cm(提高12%)。当初始电池容量> 50 AH时,就会增加水的生产。在“阳光明媚”和“非常多云”的日子里,电池充满电,水的产量增长了15%和80%,而水质分别提高了18%和21%。与参考系统性能(无SCS)相比,SC在“部分混浊日”的平均SEC增长了9%,平均SEC提高了13%。
摘要:全球可再生能源发电整合的增加给能源系统带来了一些挑战。能源系统需要按照电网规范进行监管,以确保电网稳定和可再生能源利用效率。主动侧的主要问题可能是由于发电量过大或发电量不受监管,例如部分阴天。负载侧的主要问题可能是由于能源需求过大或不受监管或非线性负载导致能源网络的电能质量下降。本研究侧重于发电侧的有功功率控制。在本研究中,研究和分析了超级电容器在混合存储系统中使用的好处。本研究提出了一种混合系统,其中光伏供电并将能量存储在电池和超级电容器中,以解决两个方面的主要问题。超级电容器模型、光伏模型和所提出的混合系统是在 MATLAB/Simulink 中设计的,额定功率为 6 kW。此外,还提出了一种新的拓扑结构,以增加被动存储系统中超级电容器的能量存储。该拓扑旨在将瞬时峰值电流能量暂时存储在超级电容器中。该拓扑的主要优点是超级电容器在两侧实现电压稳定,并限制电池负载,这直接延长了电池寿命并降低了系统成本。研究了该拓扑的仿真结果。
所有状态1.0-5.0 -5.0 l/ha 21天(h)的杂草物种采用适当的速度来控制根据伴随表中控制的杂草列表来控制最小的易感杂草。杂草生长阶段在杂草年轻且肉质较多时使用较低的速率(草:浸泡; broad裂:子叶至4叶)或种群非常稀疏。应将中位数用于中型植物(草:耕种;阔叶:4叶到晚期营养),当杂草成熟时,应使用高率(草:开花:阔叶;阔叶:开花)。杂草密度在杂草浓密时使用较高的速率。杂草的彻底覆盖对于良好的控制至关重要。气候条件在温暖的潮湿条件下应用时最佳结果。在寒冷条件和/或阴天条件下,将减少控制和/或较慢。在大多数其他条件下都会取得良好的结果,但是在热干燥条件下可能会出现较差的结果(温度高于33 O C,相对湿度低于50%)。由于压力条件而在生长中已硬化或阻碍的杂草应以最大的速度处理。覆盖杂草的覆盖范围对于良好的控制至关重要。覆盖不良可能导致重新增长。多年生杂草适用。在大多数情况下,需要进行后续治疗以控制多年生杂草的重新生长。
摘要- 太阳能光伏系统以取之不尽、用之不竭和对环境无害而闻名,已被广泛用于发电。太阳能光伏的成本竞争力可能会变得更加明显,特别是与传统燃料价格的持续上涨和光伏组件价格的快速下降相比。此外,印度的政策有利于太阳能项目的发展。但太阳能光伏具有间歇性的特点。当风速超过切入速度时,风车就会发电。风的动能被捕获,并通过涡轮机和发电机组的应用,将其转化为有用的电能。这种发电厂的能量输出取决于风速。建议的方案将太阳能光伏和风车结合起来,以提高电力供应的可靠性。由于太阳能光伏和风能都是间歇性的,因此需要放置电池组来实现供电的可靠性。该系统以独立模式运行。从各种研究中可以看出,在列城、拉达克地区,风能和太阳能发电相辅相成。在夏季或晴天,太阳能光伏发电占发电量的较大份额,而在冬季或阴天,风车将提供大部分电力。满足负载需求后的多余电力将存储在电池组中,当太阳能光伏发电和风车发电的联合运行无法满足负载需求时,将利用存储的能量。所提出的方案评估了此类方案的性能,并旨在优化系统。