摘要。引入了一种用于建模肿瘤生长的新计算工具肿瘤生长。该工具允许比较标准教科书模型,例如一般的Bertalan效和Gom-Pertz,以及一些较新的模型,包括第一次是神经ODE模型。作为一种应用,我们在接受两种不同治疗方案的患者中重新审视非小细胞肺癌和膀胱癌病变的人类元研究,以确定先前报道的性能差异在统计学上是否显着,并且是否更新,更复杂的模型更为复杂。在至少四个时间体积测量的示例中,可以进行校准,平均约为6.3,我们的主要结论是,普通的bertalan杀性模型平均具有较高的性能。但是,如果有更多测量值可用,我们认为能够捕获反弹和复发行为的更复杂的模型可能是更好的选择。
表示学习被广泛用于观察数据的因果量(例如,有条件的平均治疗效应)。尽管现有的表示学习方法具有允许端到端学习的好处,但他们没有Neyman-Ottrol-ottrodenal学习者的理论特性,例如Double Ro-Busberness和Quasi-Oracle效率。此外,这种表示的学习方法通常采用诸如平衡之类的规范约束,甚至可能导致估计不一致。在本文中,我们提出了一类新型的Neyman-Ottrodonal学习者,以在代表水平上定义的因果数量,我们称之为或称为校友。我们的旅行者具有几个实际的优势:它们允许基于任何学习的表示形式对因果量进行一致的估计,同时提供了有利的理论属性,包括双重鲁棒性和准门的效率。在多个实验中,我们表明,在某些规律性条件下,我们的或学习者改善了现有的表示学习方法并实现最先进的绩效。据我们所知,我们的或学习者是第一批提供代表学习方法的统一框架,而Neyman-ottrol-ottrodenal学习者进行因果量估计。