摘要:由于电动汽车和便携式电子设备的繁荣,高能存储设备的全球市场规模不断增加,导致电池工业生产了许多废物锂离子电池。阴极材料的解放和消除型是改善从支出的锂离子电池中得出的回收的必要程序,并启用了直接回收途径。在这项研究中,基于促进与粘合剂和二甲基亚氧化二甲基(DMSO)共溶性的相互作用,超临界(SC)CO 2具有创新的适应性以使用过的锂离子电池(LIB)回收。结果表明,解放阴极颗粒的最佳实验条件是在70℃的温度和80 bar压力下处理20分钟。在处理过程中,将聚乙烯氟(PVDF)溶解在SC流体系统中,并收集在二甲基亚氧化二甲基亚氧化二甲基(DMSO)中,如傅立叶变换红外光谱仪(FTIR)所检测到的。在最佳条件下,阴极的释放产量达到了96.7%,因此,阴极颗粒分散到较小的片段中。之后,可以将PVDF沉淀和重复使用。此外,在建议的过程中,由于粘合剂分解而没有氟化氢(HF)气体发射。建议的SCO-CO 2和共溶性系统有效地将PVDF与锂离子电池电极分开。因此,由于其效率,相对较低的能耗和环境良性特征,这种方法是一种替代性预处理方法。
将固态电池(SSB)解构为物理分离的阴极和固体电解质颗粒,与回收材料的阴极和分离器的再制造也保持密集。为了应对这一挑战,我们设计了超分子有机离子(猎户座)电解质,它们是电池运行温度下的粘弹性固体( - 40°至45°C),但粘弹性液体是100°C以上的粘弹性液体,这既可以使高品质的SSB的制造和恢复生命的生命。SSB与Li金属阳极以及LFP或NMC阴极一起使用猎户座电解质,用于45°C的周期,容量较小,容量较小,容量较小。使用低温溶剂工艺,我们从电解质中分离了阴极,并证明翻新的细胞恢复了其初始容量的90%,并以另外的100个循环维持,其第二寿命的能力保留了84%。
消除正极材料中关键金属的使用可加速全球可充电锂离子电池的普及。有机正极材料完全来自地球上丰富的元素,原则上是理想的替代品,但由于导电性差、实际存储容量低或循环性差,尚未对无机正极构成挑战。在这里,我们描述了一种层状有机电极材料,其高电导率、高存储容量和完全不溶性使锂离子可以可逆地嵌入,使其能够在电极层面上在所有相关指标上与无机基锂离子电池正极竞争。我们优化的正极可存储 306 mAh g –1 正极,能量密度为 765 Wh kg –1 正极,高于大多数钴基正极,并且可以在短短六分钟内完成充放电。这些结果证明了可持续有机电极材料在实际电池中的操作竞争力。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
尽管有机阴极材料场迅速扩张,但仍然缺乏通过易于合成的材料,具有稳定的循环和高能量密度。在此,我们报告了可以用作阴极材料的市售前体中的小有机分子的两步合成。氧化的四喹氧化物毒素(OTQC)是通过将附加的奎诺酮氧化氧化氧化氧化氧化氧化氧化氢活性中心引入结构中的四喹啉氧化菌(TQC)衍生而来的。修饰增加了材料的电压和容量。OTQC的高特异性容量为327 MAHG -1,平均电压为2.63 V,而Li -Ion电池中的Li/Li +。对应于材料水平上860 WHKG -1的能量密度。此外,该材料表现出极好的循环稳定性,在400个循环后的容量保持量为82%。同样,使用水解物中的TQC与TQC相比,OTQC表现出增加的平均电压和特异性能力,达到326 MAHG -1的特异性容量,平均电压为0.86 V,Vs. Zn/Zn 2+。除了良好的电化学性能外,这项工作还对与容量衰减有关的氧化还原机制和降解机制提供了额外的深入分析。
近年来,我们看到航天工业发生了重大变化,每年发射的卫星数量比以往任何时候都多。据预测,到本世纪末,将有 4.5 倍的航天器被送入太空,这将带来各种挑战 [1]。为了满足日益增长的需求,每颗卫星的生产成本必须降低,而卫星数量的增加将导致必须更频繁地执行防撞机动。这也意味着更多的航天器将需要推进系统来确保安全运行并确保遵守《欧洲空间碎片减缓行为准则》。截至目前,大多数推进系统都在使用肼及其衍生物等剧毒推进剂,因此在处理推进系统组件时需要采取广泛的安全措施。这使得新设备的开发以及现有设备的测试和集成变得复杂,因此成本高昂。即使是电力推进系统也经常依赖氙气等稀缺气体,而氙气的年产量有限,因此推进剂成本对整个推进系统成本有重大影响。这种情况和许多其他原因正在推动人们不断寻找使用绿色推进剂的替代解决方案。最有前途的绿色推进技术之一是水电解推进 (WEP) [ 2 ] [ 3 ]。在这种系统中,航天器在地面上用纯净水代替传统的高反应性推进剂填充。进入太空后,电解器用于将水分解成氢气和氧气。产生的气体随后可储存在较小的中间罐中,或直接用于化学或电动推进器以推动航天器。欧洲的几家公司和大学目前正在开发这项技术,而两个关键部件是推进器和电解器。到目前为止,只有少数电解器曾被发射到太空。
摘要:由4 V类氧化物阴极活性材料(CAM),无机固态电解质(SE)和锂金属阳极组成的全稳态电池(ASSB)被认为是储能技术的未来。迄今为止,除了阳极处的已知树突问题外,由于SE的氧化降解和SE和CAM之间的氧化性降解以及机械完整性的丧失,阴极不稳定性被认为是ASSB发育中最重要的障碍。在本研究中,我们通过开发具有两个关键设计元素的复合阴极结构来解决这些挑战:(1)具有高氧化稳定性的HALIDE SE,可以直接使用未涂层的4 V类CAM和(2)单晶(SC)凸轮以消除与体积变化和机械性不稳定相关的跨层间裂纹。我们展示了在此类ASSB细胞上的表现出色的性能,并结合了未涂层的SC-Lini 0.8 CO 0.1 Mn 0.1 O 2(NMC811)CAM,A LI 3 YCL 6(LYC)SE(LYC)SE和合金阳极中的LI-李 - 在C/5的高排放能力为170 mAh/g,在C/5的能力下,在C/5的能力下,几乎是90%的1000 cyc cyceles 1000 cycles 1000 cycles。通过对多晶和单晶NMC811复合阴极的比较研究,我们揭示了在后一种细胞设计中实现这种稳定循环的工作机制。该研究强调了正确的阴极复合设计的重要性,并为表现更好的ASSB细胞的未来发展提供了关键的见解。i
完整的作者列表:王,金阳;加利福尼亚大学伯克利分校,材料科学与工程; E O Lawrence Berkeley国家实验室,本恩;加利福尼亚大学伯克利分校,材料科学与工程Kim,Hyunchul;加利福尼亚大学伯克利分校,材料科学田,Yaosen;加利福尼亚大学伯克利分校,材料科学与工程;劳伦斯·伯克利国家实验室,材料科学Ceder,Gerbrand;加利福尼亚大学伯克利分校,材料科学与工程;劳伦斯·伯克利国家实验室,材料科学系金,海耶姆;劳伦斯·伯克利国家实验室,物质科学部
预插入已被广泛应用于其他分层材料(例如钒氧化物),以增强循环时的稳定性。选择充当结构稳定“支柱”的层间客人物种可以调整晶格间距,增强离子迁移率,通过与降低的V离子相关的浅供体水平赋予固有的电导率。38,44 - 48此外,水电池中存在层间水,筛选了嵌入离子和阴极之间的相互作用,从而导致更快的间隔过程。同样,也已经对紧密键合离子进行了前进的前进,以提高基于MN的阴极的性能。20预插离子的效应是每次切割离子和O和增强的结构稳定性之间的静电力。然而,这样的结论太模糊了,并忽略了前进前可能引起的结构转化,这使前插入的工作机理是未探索的区域。需要考虑和讨论结构 - 交换前阳离子和电化行为之间的性能关系。在这项工作中,分别通过SOL - 凝胶和热液方法制备了两种具有不同量K +的K + 2个伴侣。执行了详细的物理和电化学特征,以披露其在组成方面的差异和对电化学行为的影响。用K 0.28 MNO制造的Azibs 2- $ 0.1H 2 O(K 0.28 mo)在100 mA G 1下提供了相对较高的300 mA H G 1的特征。即使在高电流密度为2 A G 1的情况下,Azibs也表现出足够的特异性c c and 100 mA H G 1的能力,并在1000个周期内保持> 95%的容量,这是相关材料的最高水平。26,27相反,用K 0.21 MNO 2 $ 0.1H 2 O(K 0.21 mo)制造的Azib表现出较低的性能。通过系统的外部分析对能量存储机制进行了彻底研究。在整个循环过程中都观察到稳定的D -MNO 2原始相,以及Zn 4 So 4(OH)6 $ 5H 2 O(ZSH)相的可逆沉积/溶解,离子迁移和Mn Valence状态的同时变化。通过密度函数理论(DFT)模拟进一步划定了预介绍的K离子的潜在功能,
摘要:富含Li的锰(LRMO)阴极材料被认为是下一代锂离子电池(LIB)最有前途的候选者之一,因为它们的特异性很高(250 mAh g-1)和低成本。但是,骑自行车期间不可避免的不可逆转的结构转化会导致不可逆的容量损失,速率性能差,能量衰减,电压衰减等。基于对LRMO的最新研究,本综述强调了LRMO在晶体结构,充电/放电机制研究以及解决当前关键问题的前景方面的研究进度。同时,本综述总结了特定的修改策略及其优点和缺点,即表面涂料,元素掺杂,微/纳米结构设计,高处熵的引入等。此外,提出和讨论了LRMO的未来发展趋势和业务前景,这可能会激发研究人员为LRMO的未来发展创造更多的机会和新想法,以实现高能量密度和延长寿命的LIBS的未来发展。