摘要:研究粘稠的甘醇二甲醚溶剂可能有助于寻找安全的电解液以促进锂硫 (Li-S) 电池的应用。因此,本文对使用不易燃的四乙二醇二甲醚添加低粘度 1,3-二氧戊环 (DOL) 的电解液进行了彻底研究,以实现可持续的 Li-S 电池。该电解质的特点是低可燃性、约 200°C 的热稳定性、25°C 时离子电导率超过 10 − 3 S cm − 1、Li + 迁移数约为 0.5、电化学稳定窗口从 0 至约 4.4 V vs Li + /Li,Li 剥离沉积过电位为 ∼ 0.02 V。DOL 含量从 5 wt % 逐渐增加到 15 wt % 会提高 Li + 运动的活化能,降低迁移数,稍微限制阳极稳定性,并降低 Li/电解质电阻。该电解质用于 Li − S 电池,其复合材料由硫和多壁碳纳米管以 90:10 的重量比混合而成,利用了优化的集流体。对阴极的结构、热行为和形貌进行了初步研究,并在使用标准电解质的电池中使用。该电池可进行超过 200 次循环,硫负载增加至 5.2 mg cm − 2,电解质/硫 (E/S) 比降低至 6 μ L mg − 1 。随后将上述硫阴极和基于甘醇二甲醚的电解质组合成安全的 Li − S 电池,其循环寿命和输出容量与研究浓度范围内的 DOL 含量相关。关键词:Li − S 电池、甘醇二甲醚电解质、低可燃性、MWCNT、集电器、E/S 比
Jiangtao Hu 1 , Hongbin Wang 1 , ∗ , Biwei Xiao 2 , ∗ , Pei Liu 1 , Tao Huang 1 , Yongliang Li 1 , Xiangzhong Ren 1 , Qianling Zhang 1 , ∗ , Jianhong Liu 1 , ∗ , Xiaoping Ouyang 3 and Xueliang Sun 4 , 5 , ∗ 1 Graphene Composite Research Center, College of深圳大学化学与环境工程,深圳518060,中国; 2 Grinm(广东)高级材料与技术研究所,佛山528051,中国; 3西安格坦大学材料科学与工程学院,中国411105; 4西安大略大学机械与材料工程系,安大略省N6A 5B9,加拿大和5东部高级研究所,东部技术研究院,宁波315020,中国
[A] Y. Chen,Y。Zhu,X。Kuai,B。Zhang,J。Yin,X。Wu,H。Zhang,Y。Yan,Y。Qiao,S.-G。 Sun State固体表面物理化学的主要实验室,化学与化学工程学院Xiamen化学系,361005,P。R.中国Xiamen大学电子邮件:kuaixiaoxiao@xmu.edu.edu.edu.edu.edu.cn,yuqiao@xmu.edu.edu.edu.edu.edu.cn [b] XU化学科学与工程部阿根纳国家实验室Lemont,伊利诺伊州60439,美国电子邮件:xug@anl.gov [C]sun,Q. R.中国中国中国源头源科学中心东部523803,中国[G] Y.Sun X射线科学司阿贡国家实验室Lemont,IL 60439,美国[I] yuqiao@xmu.edu.cn支持本文的信息通过文档末尾的链接提供。Sun X射线科学司阿贡国家实验室Lemont,IL 60439,美国[I] yuqiao@xmu.edu.cn支持本文的信息通过文档末尾的链接提供。
尽管有机阴极材料场迅速扩张,但仍然缺乏通过易于合成的材料,具有稳定的循环和高能量密度。在此,我们报告了可以用作阴极材料的市售前体中的小有机分子的两步合成。氧化的四喹氧化物毒素(OTQC)是通过将附加的奎诺酮氧化氧化氧化氧化氧化氧化氧化氢活性中心引入结构中的四喹啉氧化菌(TQC)衍生而来的。修饰增加了材料的电压和容量。OTQC的高特异性容量为327 MAHG -1,平均电压为2.63 V,而Li -Ion电池中的Li/Li +。对应于材料水平上860 WHKG -1的能量密度。此外,该材料表现出极好的循环稳定性,在400个循环后的容量保持量为82%。同样,使用水解物中的TQC与TQC相比,OTQC表现出增加的平均电压和特异性能力,达到326 MAHG -1的特异性容量,平均电压为0.86 V,Vs. Zn/Zn 2+。除了良好的电化学性能外,这项工作还对与容量衰减有关的氧化还原机制和降解机制提供了额外的深入分析。
b'功能陶瓷对于电池的可扩展生产固体电解质至关重要。li-garnet li 7 la 3 Zr 2 O 12 D(LLZO),尤其是其立方相(Cllzo),由于其高LI + conductitivity和广泛的电化学稳定性窗口而引起了人们的注意。但是,高烧结温度引起了对阴极界面稳定性,生产成本和可扩展制造能源消耗的担忧。我们显示了一种替代\ Xe2 \ x80 \ x9csinter-free \ xe2 \ x80 \ x9d途径,以稳定Cllzo作为其烧结温度的一半胶片。具体而言,我们建立了一个时间温度的翻译(TTT)图,该图可捕获基于结晶焓分析的非晶态 - 结晶的LLZO转换,并确认在500 \ xc2 \ xc2 \ xb0的低温下进行薄膜薄膜的稳定稳定。可用于针对生产中碳足迹减少的电池电池设计。
我要感谢我的大学有机会与IBM研究合作。我想对IBM,尤其是电池组表示感谢,以欢迎我并提供他们的支持。特别感谢Max Giammona和Vidushi Sharma在协助我方面的友善和专业知识。我感谢Murtaza Zohair的坚定可用性,并以友好的举止有助于我的理解。Andy T. Tek,电池实验室的超级英雄,Andy T. Tek,电池实验室的超级英雄,
不稳定性发生在固态复合阴极(SSC)中,该阴极(SSC)由阴极活性材料(CAM),SE和通常碳添加剂的颗粒混合物组成。氧化物和硫化物是SE的两个最精心研究的群体。氧化物类型的SE具有优势,包括高机械强度,高温耐受性,对空气和溶剂的稳定性以及广泛的电化学稳定窗口。11然而,基于氧化物的刚性SE不能在没有高温烧结的情况下在颗粒和晶粒之间形成良好的联系。高温烧结将导致CAM和氧化物之间的不希望的元素分化。12–14因此,在大多数类型的阴极中形成直接的阴极/氧化物部分接触是具有挑战性的。不同于氧化物,基于硫化物的SE具有高离子电导率和低/中等温度下的可变形性,希望将电极处理到高,接近理论密度。15–20然而,硫化物易于在CAM(例如Li(Ni X Co Y Mn 1-X-Y)O 2和Li(Ni X Co Y Al 1-X-Y)O 2)的工作势下氧化。21–23即使凸轮颗粒涂有保护层(例如,氧化物),这些保护层部分钝化了表面,例如电子渗透所需的碳添加剂,例如碳纳米诺纤维(CNF),也可能在氧化硫化物电解质中发挥作用。24,25在两种情况下,持续的化学相互作用都破坏了保留的能力和可环性。 26–30凸轮颗粒本身的破裂也可能发生。 每个凸轮都合并24,25在两种情况下,持续的化学相互作用都破坏了保留的能力和可环性。26–30凸轮颗粒本身的破裂也可能发生。每个凸轮都合并从机械上讲,在诱导的插入/提取时,li-ion插入/提取的循环体积变化会导致硫化物SE,CNF和CAM之间的突然或进行性接触损失,从而导致无能力失效和不可逆转的能力损失。31–34为了减轻某些机械效应(以及由于亚最佳电极制备引起的持续孔隙率),细胞可能会在循环测试期间受到超过50 MPa的一层堆栈压力。然而,实践应用需要较低的堆栈压力,例如在电动汽车中,35,36,并且压力过大可能会加速凸轮的损坏并导致LI金属电极的变形。鉴于SSC容量褪色机制的这种复杂性和相互作用,机械降解与化学和电化学侧反应的分离对于阐明发生的各种过程并寻找相应策略至关重要。在这里,我们研究了CAM体积变化和堆叠压力对SSC容量衰减的影响。两种具有相同电压窗口的活性材料,但循环过程中的不同体积变化是Chos的,包括Li 4 Ti 5 O 12(LTO),具有可忽略不计的volume变化和α-NB 2 O 5,其中4%的LI Intercalation in Intercalation 37,38比较了内在的伏特 - UME对已保留能力变化的影响。
摘要。储能技术成为支持电气化议程的关键方面。在过去十年中,可再生能源和电动汽车的兴起趋势会产生意外的电池技术需求。锂离子电池(LIB)已被吹捧为一种有关储能开发的革命性技术。除了LIB由于其有前途的性能,LIB还是对电子应用的表现非常出色,它在质量生产的可伸缩性方面也广为人知。尽管预测LIB仍将在未来十年内主导市场,但是电池千千快事的增长仍然很慢。生产过程的难度和所使用的机器数量成为支持行业规模端到端电池生产的主要不情愿因素。因为电池生产链缺乏精确的计算可能会影响业务的可持续性。因此,有必要调查从实验室分为行业规模的扩大电池阴极生产。该研究的对象研究是印尼领先的电池研究所,国家电池研究所。通过考虑原材料,机械,功耗和人力等成本结构因子(例如成本结构因子),将计算集中在NMC 811阴极活动材料上。该结果成功估计了每批NMC 811阴极100公斤生产的总成本,或一年中的36吨。注意,本手稿中讨论的原材料成本有限的数据,而机械,功耗和人力方面将在另一篇文章中分别讨论。
Sumitomo Metal Mining Co.,Ltd。(TSE:5713,“ SMM”)很高兴地宣布,它已经达成了一项协议,以对Nano One Inality Corporation(TSX:Nano,“ Nano One”)进行战略性投资,该技术公司是一家技术公司,以实现高级材料生产的技术生产,以实现型Lithium-Eir Townere Patterion Cattery Patterion Cattery Patteraime Patteraime Patteraime Patteraime Patteraime Patteraime Patteraime Patteraime Patteraime Patteraime Patteraime Patteraime Patteraime Patteraigh-In (EV),除其他协作工作。要投资的金额为1690万加元(约19亿jpy *),Nano One将签发总计5,498,355股普通股(“股票”),约占Nano一股投资收入的当前发行和未发行股份的5%。这是阴极主动材料(“ CAM”)首次投资Nano One。凸轮是电池的四种主要材料之一,是最昂贵,最重要的组成部分。nano One拥有独特的CAM生产技术,称为单锅工艺。这项技术降低了过程的复杂性,与当前技术相比,过程步骤更少,CAPEX和OPEX较低。nano One One锅技术将使CAM生产能够以较低的成本和环境影响,而不是当前的技术。这项联合开发工作的目的是实现磷酸锂(LFP)CAM和富含镍凸轮化学的低成本,低环境影响生产过程,例如锂镍锰钴氧化物(“ NMC”)。通过将Nano One技术集成到SMM的生产过程中。SMM生产并出售用于车辆电池的CAM。SMM还将在CAM生产领域与Nano One寻求其他合作,包括合作,例如建立合资和许可协议。根据市场需求,它旨在将每月CAM生产能力从目前的5,000吨增加到2025财年的7,000吨,在2027财年为10,000吨和15,000吨。就年产能而言,从目前的2025财年,目前的大约60,000吨到84,000吨,2027财年的120,000吨和120,000吨。2030财年。通过这一战略投资和共同发展,我们正在努力进一步扩大电池材料业务,并成为一家
可以富集各种类型的电活性微生物,形成降低电荷转移耐药性的生物心理,从而加速电子在微生物燃料电池中具有高氧化还原电势的重金属离子。微生物作为生物大道上的生物催化剂可以减少重金属还原所需的能量,从而使生物学能够实现较低的还原性发作潜力。因此,当这种重金属取代氧气(如电子受体)时,重金属的价状态和形态在生物学的还原作用下变化,从而意识到重金属废水的高效处理。这项研究回顾了生物疗法的微生物群落的机制,主要影响因子(例如电极材料,重金属的初始浓度,pH和电极电位的初始浓度),并讨论了生物降压物中的电分布以及微生物电极和重金属(电子受体(电子受体)之间的竞争)。生物心降低重金属还原中的电化学过电势,从而允许使用更多的电子。我们的研究将提高对生物座电子传输机制的科学理解,并为使用生物座净化重金属废水提供理论支持。