摘要:锂离子电池(LIB)主导了可充电电源的市场。为了满足不断增长的市场需求,技术更新集中在先进的电池材料上,尤其是阴极,这是LIBS中最重要的组成部分。在这篇综述中,我们从学术和工业角度概述了阴极的材料和加工技术的开发。我们将基于插入和转化化学的阴极材料的基本面进行了比较。然后,我们讨论了阴极的处理,具体侧重于干燥过程的机制和粘合剂的作用。对厚电极开发的几个关键参数进行了严格的评估,这可能会提供有关下一代电池设计的见解。
†该材料基于美国能源部电力办公室(OE)的工作。这项研究使用了美国能源部(DOE)科学用户设施的高级光子来源的资源de-ac02-06ch11357。这项研究使用了美国能源部(DOE)科学用户设施办公室(DOE)由Brookhaven National Laboratory为DOE科学办公室运营的美国能源部(DOE)科学用户设施办公室的National Synchrotron Light Source II的Beamline 7-BM(QA)(QAS)。de-sc0012704。这项工作是在综合纳米技术中心进行的,该中心是科学用户设施,该办公室为美国能源部(DOE)科学办公室运营。我们感谢Andrea Bruck博士的海报设计。Sandia国家实验室是由霍尼韦尔国际公司(Honeywell International Inc.)全资子公司Sandia,LLC国家技术与工程解决方案公司管理和运营的多个实验室,该实验室由美国国家能源部国家核安全管理局(NANED NAUD SECUCTION ADVINOCATY)根据合同DE-NA0003525进行。
3 宁波大学材料科学与化学工程学院,新型功能材料与制备科学国家重点实验室基地,浙江宁波 315211 4 池州市中纳材料科技有限公司,安徽省池州市高新技术产业园区永金大道西段 * 电子邮件:chuijing@nbu.edu.cn 收讫日期:2022 年 10 月 8 日/接受日期:2022 年 11 月 24 日/发布日期:2022 年 12 月 27 日 水系锌离子电池 (ZIB) 因其高安全性、低成本和卓越的倍率性能而被公认为新型储能系统。然而,大多数 ZIB 正极表现出较大的电化学极化,这通常是有害的并妨碍电池的稳定循环。在此,我们采用一种复合策略,通过涂覆高分子量有机层来调节 MnV 2 O 6 正极中的极化。 MnV 2 O 6 与高分子量聚苯胺的协同作用,加上电子电导率的提高,加速了锌的存储动力学,使电化学极化趋于狭窄,从而有效提高了水系锌离子电池的电化学性能。赝电容复合正极 MnV 2 O 6 @PANI 在 100 mA g -1 时的平均放电容量为 258.8 mA hg -1,在 1 A g -1 时仍表现出良好的倍率性能,几乎是未改性 MnV 2 O 6 的两倍。关键词:水系锌离子电池;极化;锰钒酸盐;聚苯胺。1.引言
DOI:10.1002/((请添加稿件编号)) 文章类型:综述 改善水系多价金属离子电池层状结构正极的策略 吴晨,谭辉腾,黄文静,刘春泰,魏伟峰,陈利宝*,闫庆宇* 吴晨,中南大学粉末冶金国家重点实验室,长沙 410083,中国。 南洋理工大学材料科学与工程学院,新加坡 639798,新加坡。 谭辉腾博士、黄文静博士,南洋理工大学材料科学与工程学院,新加坡 639798,新加坡。 刘春泰 郑州大学材料加工与模具教育部重点实验室,郑州 450002,中国。 魏伟峰教授、陈利宝教授,中南大学粉末冶金国家重点实验室,长沙 410083,中国。电子邮件:lbchen@csu.edu.cn 严庆宇教授,南洋理工大学材料科学与工程学院,新加坡 639798,新加坡。电子邮件:alexyan@ntu.edu.sg 关键词:多价金属离子电池、形态工程、结构工程、电解质工程 亮点
图4:SE材料对缺陷指标的弹性特性的影响。X轴代表SE Young的模量,不同的曲线代表不同的SE屈服强度。绿色区域是硫化物型SE的杨氏模块(E SE),黄色区域用于氧化物型SE。选择具有较小𝐸()和s的SE材料;可以最大程度地减少机械缺陷。
公式V a(v)∆ V(%)E H(MEV)S C(MAH/G)S E(WH/kg)分解LI 2 FESO 2.33 -4.5 0.0 227.3 N/a Li 2 Fe 4 S 3 O 2 2.72-7.2.72-7.3.3.3.3.3.3.3.3.3.3.3.3.3.3.gre ∗ 2.56 -5.3 3.3 248.6 637.8 li 2 feso + li 2 fe 4 s 3 o 2 + li 2 s li 2 s li 2 s li 2 fe 2 fe 2 o 2 2.56 -10.0 3.4 193.1 496.1 496.0 li 2 feo 2 feo 2 fe 4 s 3 s 3 o 2 s 3 o 2 li 2 li 2 s 2 2 Fe 4 S 3 O 2 + li 2 S Li 4 Fe 3 S 3 O 2 2.55 -4 18.1 248.6 633.6 Li 2 Feso + Li 2 Fe 4 S 3 O 2 + Li 2 S Li 2 S Li 4 O 2.47 -3.8 30.5 236.5 236.8 585.4 Li 2 Fe 2 Fe 4 2.58 -6.9 38.6 140.5 363.4 Li 2 Fe 4 S 3 O 2 + Fes + Fes + Li 2 S Li 2 S Li 4 Fe 2 S 3 O 2.09 -5.5 45.8 213.0 445.5 Li 2 Li 2 Fe 2 + Li 2 S Li 2 Fe 3 S 3 O 2.44 -7.6 48.8 182.6 446.5 Li 2 Fe 4 S 3 O 2 + Fes + Fes + Li 2 S Li 2 S Li 6 Fes 3 O 2.28
扩展Data_fig1.tif a,X射线吸收在Fe K-边缘(左)的边缘结构附近(XANES)和VC-NFMO的Mn K-EDGE(右),在不同的电荷/放电状态下收集; Fe 2+ /Fe 3+和Mn 2+ /Mn 3+ /Mn 4+标准光谱显示在底部以进行比较。b,在不同的电荷/放电状态下收集的VC-NFMO的Fe K-EDGE(左)和Mn K-EDGE(右)EXAFS光谱的傅立叶变换(fts)。光谱已被抵消以确保可见性,并且在OCV状态中收集的EXAFS光谱(Fe和Mn)也已被抵消并叠加为灰色虚线以进行比较。c,在各种电荷/放电状态下的VF-NFMO(灰色)和VC-NFMO(蓝色)的氧化还原态分析。平均边缘位置由积分方法拟合。Fe k-edge(Top)和Mn K-边缘(底部)边缘位置直接适用于相应的Xanes边缘区域,补充图18和(a)。d,
MXenes 是一种寿命长达十年的陶瓷材料,于 2011 年在德雷塞尔大学首次发现 1 。它们的通式为 M n +1 X n T x , (n=1,2,3) ,其中 T 是表面终止原子,M 是早期过渡金属,X 是 C 或 N 2-4 ,MXenes 直接从其相应的 MAX 相蚀刻而成。后者是层状碳化物或氮化物结构,公式为 M n +1 AX n , (n=1,2,3) ,其中 A 是元素周期表 A 族元素,通常是第 13 或 14 族。在图 1 中,我们可以看到元素周期表中 MAX 相和 MXenes 的成分以及它们的结构。具有 OH 或 F 终端的碳化钛 Ti 3 C 2 是从钛铝 MAX 相 Ti 3 AlC 2 1 中发现的第一个 MXene。由于 Ti 3 C 2 T x MXene 仍然最具导电性 6–8,文献中对其在二次(即可充电)电池中的应用潜力进行了广泛研究。为此,人们试图通过操纵终端原子 8,9 来控制其电子和机械性能。可充电离子电池是一种基于离子插入的储能装置 10。通常,离子电池由阴极(正极)和阳极(负极)组成,并与含有离子的电解质接触。两个电极由微孔聚合物膜(隔膜)隔开,该膜阻止电子与离子一起在它们之间穿过 11。商用电池单元通常是在放电状态下生产的,而阳极和阴极电极在与大气接触时需要保持稳定 11。充电时,电极需要连接到外部电源,而电池
不稳定性发生在固态复合阴极(SSC)中,该阴极(SSC)由阴极活性材料(CAM),SE和通常碳添加剂的颗粒混合物组成。氧化物和硫化物是SE的两个最精心研究的群体。氧化物类型的SE具有优势,包括高机械强度,高温耐受性,对空气和溶剂的稳定性以及广泛的电化学稳定窗口。11然而,基于氧化物的刚性SE不能在没有高温烧结的情况下在颗粒和晶粒之间形成良好的联系。高温烧结将导致CAM和氧化物之间的不希望的元素分化。12–14因此,在大多数类型的阴极中形成直接的阴极/氧化物部分接触是具有挑战性的。不同于氧化物,基于硫化物的SE具有高离子电导率和低/中等温度下的可变形性,希望将电极处理到高,接近理论密度。15–20然而,硫化物易于在CAM(例如Li(Ni X Co Y Mn 1-X-Y)O 2和Li(Ni X Co Y Al 1-X-Y)O 2)的工作势下氧化。21–23即使凸轮颗粒涂有保护层(例如,氧化物),这些保护层部分钝化了表面,例如电子渗透所需的碳添加剂,例如碳纳米诺纤维(CNF),也可能在氧化硫化物电解质中发挥作用。24,25在两种情况下,持续的化学相互作用都破坏了保留的能力和可环性。 26–30凸轮颗粒本身的破裂也可能发生。 每个凸轮都合并24,25在两种情况下,持续的化学相互作用都破坏了保留的能力和可环性。26–30凸轮颗粒本身的破裂也可能发生。每个凸轮都合并从机械上讲,在诱导的插入/提取时,li-ion插入/提取的循环体积变化会导致硫化物SE,CNF和CAM之间的突然或进行性接触损失,从而导致无能力失效和不可逆转的能力损失。31–34为了减轻某些机械效应(以及由于亚最佳电极制备引起的持续孔隙率),细胞可能会在循环测试期间受到超过50 MPa的一层堆栈压力。然而,实践应用需要较低的堆栈压力,例如在电动汽车中,35,36,并且压力过大可能会加速凸轮的损坏并导致LI金属电极的变形。鉴于SSC容量褪色机制的这种复杂性和相互作用,机械降解与化学和电化学侧反应的分离对于阐明发生的各种过程并寻找相应策略至关重要。在这里,我们研究了CAM体积变化和堆叠压力对SSC容量衰减的影响。两种具有相同电压窗口的活性材料,但循环过程中的不同体积变化是Chos的,包括Li 4 Ti 5 O 12(LTO),具有可忽略不计的volume变化和α-NB 2 O 5,其中4%的LI Intercalation in Intercalation 37,38比较了内在的伏特 - UME对已保留能力变化的影响。
抽象的O3型层状氧化物阴极(例如NANI 0.5 MN 0.5 O 2)由于其高理论特异性能力而引起了很大的关注,同时使用丰富的低成本钠作为互化物种。与锂类似物(Linio 2)不同,Nanio 2(NNO)表现出较差的电化学性能,这是由于结构不稳定性和下库仑效率而产生的。为增强其用于实际应用的可环性,NNO通过钛取代进行了修改,以产生O3型Nani 0.9 Ti 0.1 O 2(NNTO),该nno通过固态反应首次成功合成。使用多种表征技术详细研究了其出色性能背后的机制。nnto的特定排放能力约为190 mAh g -1,并且在循环中有多个相变的情况下,在2.0-4.2 V的潜在窗口中,即使在循环中存在多个相变。这种行为可以归因于取代基,这有助于维持NA缺陷相位的较大的SLAB距离,并通过降低镍的平均氧化状态来减轻Jahn-Teller活性。然而,高电位下的体积崩溃和不可逆的晶格氧损失仍然不利于NNTO。尽管如此,可以通过涂层和掺杂策略进一步提高性能。这不仅将NNTO定位为有前途的下一代阴极材料,而且还可以成为高能密度Na-ion电池领域的未来研究方向的灵感。