目的。[1-3]此外,等离子体在包括太空推进和生物医学技术在内的许多领域都起着重要作用。[4-6]阴极管和等离子体的一代需要外部电源设备,但是不幸的是,由于其重量较重,而且体积较大,因此该设备无法便携。因此,高压应用在没有电力供应的太空,战场和偏远地区等严酷的环境中存在严重限制。基于Triboelectrification和静电诱导的工作机制的Triboelectric纳米发育仪(TENGS)[7-11]可以在我们的圆形或人类运动中的机械运动中产生电力,而无需外部电源。[12–16]到目前为止,Teng产生的功率已被用作可植入的医疗设备,发光二极管,液晶显示器,传感器和低功耗电子设备的能源。[11,17–20]考虑到自动高压和便携性,Teng可以被视为高压应用的理想驾驶源。在这项工作中,我们提出了一个基于锯齿的电极的Teng(SE-TENG),该Teng(SE-Teng)基于火花放电来产生超高功率输出,以直接驱动高压操作设备。接触两种不同的摩擦材料,然后
在追求这一目标的过程中,消除不可预测的行为已被视为一项必要的工程费用。消除计算噪声的努力涵盖了整个微电子技术堆栈,从研究高可靠性材料和设备到纠错电路和架构,再到容错系统和算法。确定性计算显然取得了令人难以置信的成功——在不到四分之三个世纪的时间里,我们已经从大约一千个只能进行相对简单计算的阴极管阵列过渡到每秒能够处理 10 18 次浮点运算的高性能计算百亿亿次系统。[2,3] 然而,能耗已日益成为传统处理器面临的挑战。人工智能 (AI) 和机器学习 (ML) 在多种应用中的采用越来越广泛,以及对更多计算的需求不断增长,导致对结合多种技术(图形处理单元 (GPU)、中央处理单元 (CPU) 等)的异构计算平台的需求更高。随着越来越多的处理器被整合,未使用的处理器需要关闭以处理散热问题(即“暗硅”)。[4] 这些问题加上大量新设备、内存计算、高效的芯片间通信、3D 堆叠和集成技术
在追求这一目标的过程中,消除不可预测的行为已被视为一项必要的工程费用。消除计算噪声的努力涵盖了整个微电子技术堆栈,从研究高可靠性材料和设备到纠错电路和架构,再到容错系统和算法。确定性计算显然取得了令人难以置信的成功——在不到四分之三个世纪的时间里,我们已经从大约一千个只能进行相对简单计算的阴极管阵列过渡到每秒能够处理 10 18 次浮点运算的高性能计算百亿亿次系统。[2,3] 然而,能耗已日益成为传统处理器面临的挑战。人工智能 (AI) 和机器学习 (ML) 在多种应用中的采用越来越广泛,以及对更多计算的需求不断增长,导致对结合多种技术(图形处理单元 (GPU)、中央处理单元 (CPU) 等)的异构计算平台的需求更高。随着越来越多的处理器被整合,未使用的处理器需要关闭以处理散热问题(即“暗硅”)。[4] 这些问题加上大量新设备、内存计算、高效的芯片间通信、3D 堆叠和集成技术