我们报告了通过解离电子附着于气态甲酰胺而产生的阴离子的三维动量成像测量的实验结果。从动量图像中,我们分析了 NH7、O~ 和 H~ 碎片的角能和动能分布,并讨论了两种入射电子能量范围(从 5.3 eV 到 6.8 eV 以及从 f 0.0 eV 到 ff .5 eV)的多重共振的可能电子附着和解离机制。与实验结果相比,对于 ^6 eV 入射电子,NET 阴离子的角分布的从头算理论结果强烈表明,产生该碎片的两个共振之一是 2 A" Feshbach 共振。
“3.5.3.9.3 燃油舱总容量为 600 立方米及以上的船舶,应按照 MARPOL 73/78 附则 I 第 12A 条规定,具有双壳和双底以保护燃油舱,不论每个燃油舱的容量如何。但是,如果考虑到船舶的类型和用途,提供结构保护不可行,则作为此项要求的替代,船舶应符合 MARPOL 73/78 附则 I 第 12A.11 条规定的意外燃油流出性能标准。”。 8 删除第 3.5.4 条。第 3.5.5 条及其引用内容重新编号为 3.5.4 条。 9 删除第 3.6.4 条。第 3.6.5 条和第 3.6.6 条及其引用内容重新编号为 3.6.4 条和 3.6.5 条。 10 第3.6.5款由下列文字替代:
RE100 认为,技术标准可以引入新的要求来减轻上述风险,并向市场和政策制定者发出更明确的信号,以更快速、更全面地过渡到低碳能源系统。RE100 认为应该考虑采用特定技术的方法。生物质/氨煤共燃对一些国家能源政策尤为重要,而且有大量研究强调了其风险。然而,鉴于天然气也是共燃的候选对象,并且在考虑甲烷逸散排放时,其生命周期排放量与煤炭相当,因此本次咨询也应考虑一般的共燃或混合标准。在制定影响单燃或用于燃料电池的部分可再生氢或氨的规则时,可能需要谨慎行事。可再生氢和氨在净零能源系统中发挥着作用,RE100 只希望看到这些产品得到有效利用(即不用于发电)。由于它们目前的产量非常小,RE100 担心会给它们的增长带来意想不到的后果。
在某些环境条件、温度和蒸汽浓度下会着火。易燃液体蒸汽“着火”的温度称为闪点。当燃料蒸汽达到称为下燃极限 (LFL) 或下爆炸极限 (LEL) 的水平时,蒸汽浓度就会达到危险水平。这些限制通常以体积百分比表示。低于 LFL / LEL(下燃极限 / 下爆炸极限)的燃料被认为太弱而无法燃烧。如果燃料蒸汽浓度超过上燃极限或上爆炸极限,则燃料被认为太浓而无法燃烧。这两个极限之间的燃料蒸汽浓度被认为处于其可燃范围内,它会在与点火源接触时点燃并燃烧。控制不必要的火灾和爆炸的最佳方法之一是将燃料蒸汽浓度保持在 LFL / LEL(可燃性下限 / 爆炸性下限)以下,从而防止其达到可燃性范围 [6], [7]。
1MW PEM电解器质子交换膜电解器包含四个具有负和正电极的细胞堆栈。当电流通过水时,氢质子越过膜在阴极处形成氢,而在阳极形成阳性的氧气离子。
Armor 热水器 - 工作原理... 1. 不锈钢热交换器 允许水流过专门设计的线圈以实现最大热传递,同时提供对烟气腐蚀的保护。线圈包裹在包含燃烧过程的夹套中。 2. 燃烧室检修盖 允许进入热交换器线圈的燃烧侧。 3. 鼓风机 鼓风机通过文丘里管(项目 5)吸入空气和燃气。空气和燃气在鼓风机内部混合,并被推入燃烧器,在燃烧室内燃烧。 4. 燃气阀 燃气阀感应鼓风机产生的负压,仅当燃气阀通电且燃烧空气流动时才允许燃气流动。 5. 文丘里管 文丘里管控制进入燃烧器的空气和燃气流量。 6. 烟气传感器(极限额定值,未显示) 该传感器监测烟气出口温度。如果烟气温度过高,控制模块将调节并关闭热水器。这可防止烟道过热。 7. 热水器出口温度传感器(与高限传感器一起安装) 该传感器监测热水器出口水温(系统供水)。如果选择作为控制传感器,控制模块会调整热水器燃烧率,以使出口温度正确。 8. 热水器入口温度传感器 该传感器监测回水温度(系统回水)。如果选择作为控制传感器,控制模块会调整