这项研究的目的是建立曲线下的零级紫外线光谱学 - 吸光度和零订单区域(AUC)方法(AUC)方法,用于估计散装和阴道胶囊中硝酸硝酸盐的估计。芬太纳唑硝酸盐是一种抗真菌药物,它完全不溶于水。甲醇用作溶剂溶解芬太纳唑硝酸盐的溶解度。溶解在甲醇中时,发现硝酸芬太纳唑的最大吸收在波长253 nm处。这些方法基于在253nm处的吸光度测量和曲线下面积的整合,以分析242-262 nm波长范围内的芬康唑硝酸盐。在两种方法的相关系数r 2> 0.99的5-30 µg/ml浓度范围内,药物遵循线性。根据ICH指南,对所提出的方法进行了准确性(恢复%),精度,可重复性和坚固性的验证。将所提出的方法用于阴道胶囊中硝酸硝酸盐的定性和定量估计,结果与所声称的标签非常吻合。开发的方法可用于散装和阴道胶囊中硝酸盐的常规分析。
图S2显示了一个简化的MIC阶段的通用模型,用于n = 1.75的FSI插入。如主文本中指定的,可以看到在石墨烯层之间有或没有intercalant的画廊的交替。多个插入阶段的共存将导致使用公式1.如果占用石墨烯层之间的每个空间,则N等于1,并且X射线衍射图上的反射00n+1应该消失。这是对PF 6-阴离子的观察到的,但是,该过程的性质仍然可以讨论,并计划对此进行详细研究。我们介绍了两种情况的MIC期限。观察到的现象的另一个原因可能是主要文本中指定的两种机制的混合物:层间空间的顺序和随机统计填充。随着温度升高,可能会预期客人物种的随机分布,因为熵因子对系统的吉布斯自由能的贡献应相应增加。此外,还必须注意以下事实:根据其初始层间间距,由温度引起的互化机制的变化可能有所不同,这将代表一个有趣且广泛的方向探索。阴离子扩散
工业或实验室应用中,全面管控的制程设有最高的纯度和品质,其中包含,其中包含去离子水或较低等级的超纯水。对于最初的工业水处理以及为,必须准确控制和确树脂的两阶段来影响全部阳离子和阴离子的去除。实保持水的物理特性、参数和浓度。去离子系统使用离子交换 实保持水的物理特性、参数和浓度。去离子系统使用离子交换 实保持水的物理特性、参数和浓度。去离子系统使用离子交换 实保持水的物理特性、参数和浓度。去离子系统使用离子交换 实保持水的物理特性、参数和浓度。去离子系统使用离子交换 实保持水的物理特性、参数和浓度。去离子系统使用离子交换 实保持水的物理特性、参数和浓度。去离子系统使用离子交换 实保持水的物理特性、参数和浓度。去离子系统使用离子交换 实保持水的物理特性、参数和浓度。去离子系统使用离子交换,gf piping Systems为这些严苛的黏着和过滤过程提供高品质的系统,满
天然孔口式内窥镜外科手术(NOTES)是一种微创手术,使用人体的自然孔口进入腹腔。利用自然孔通过经胃,经胸腔,跨性别和经阴道的途径到达内部器官,从而使腹壁从切口中避免了腹壁。因此,提出的笔记包括较少的手术部位感染,疝气,疤痕和术后疼痛以及改善的化妆品结果[1]。自Kal-Loo [2]的猪模型中的第一次临床前试验以来,已经进行了手术创新,以安全,成功地将笔记应用于各种程序。在几个音符的入口处,通过阴道洞的阴道术引起了特别的兴趣,因为骨术已被广泛用于妇科学术期,并被证明是一个安全且可行的入口端口[3]。从历史上看,根据纯音符的定义,有限镜检查被视为第一个自然孔口程序,可以在避免腹腔的同时访问和足够的可视化腹腔[4]。因此,阴道笔记(VNOTES)在妇科领域的兴趣越来越多,因为其在辅助切除术,滞后术,肌瘤切除术,prococolocolpopopopopopopopopopopopopopopopopopopopopopopopopopopopopopopopopopopopopopopopexy和最近对癌症手术方面的效用[5,6]。
摘要:使用基于范德华校正的密度功能理论(Rev-VDW-DF2函数),使用使用机器学习的原子质势模拟了温度诱导的相变和离子电导率。阶 - 疾病相变的模拟温度,晶格参数,扩散,离子电导率和激活能与实验数据非常吻合。我们对Li 2 B 12 H 12的模拟发现了[B 12 H 12] 2-阴离子的重新定位运动的重要性。在有序的α-相(t <625 K)中,这些阴离子具有明确的方向,而在无序的β-相(t> 625 K)中,它们的方向是随机的。在空缺系统中,观察到其完整的旋转,而在理想的晶体中,阴离子显示有限的vabrational运动,表明没有动态无序的相位过渡的静态性质。使用机器学习间的原子势使我们能够以长(纳秒尺度)分子动力学研究大型系统(> 2000个原子),从头开始质量。关键字:密度功能理论,机器学习间原子潜能,固体电解质,相变,离子电导率
刑法一年级课程的主要案例之一以 Regina v. Cunningham 案开始了对犯罪意图的讨论。1 Cunningham 急需钱,决定拆掉他即将成为地下室的住宅煤气管道上的煤气表,偷走里面的先令。2 Cunningham 犯有盗窃罪,这是毫无争议的。3 问题是 Cunningham 没有关掉煤气,煤气渗入隔壁的房屋,导致邻居 Sarah Wade 部分窒息。4 虽然这个案例从技术上讲是关于《人身罪法》中“恶意”一词的解释,但学生们从中得到的教训更为广泛:每项罪行都应有其自身的罪责。小偷的犯罪性与毒害邻居的犯罪性不同。相反,Cunningham 需要对毒害邻居的可能性承担罪责。具体而言,坎宁安必须不顾及危及生命的风险。5 陪审团没有得到这样的指示——可逆转的错误。6 虽然这种犯罪意图的观点是基础性的,但有时会被抛弃。罪魁祸首包括阴谋和共谋的两个教义附属物。首先,根据平克顿原则,密谋实施一项罪行可能会使被告承担另一项罪行的责任,即使被告不同意。7 第二,根据自然和可能原则,
发现液体电池电解质有助于促进稳定的固体电解质相互作用(SEIS)减轻树突形成,这对于在下一代能量密集的电池中启用锂阳极至关重要。与传统的电解质溶剂相比,基于四氢呋喃(THF)的电解质系统已经通过鼓励阴离子的分解(而不是有机溶剂),从而产生了无机富丽石的SEIS,从而在实现高稳定性锂阳极方面取得了巨大成功。在此,通过采用各种不同的锂盐(即LIPF 6,Litfsi,Lifsi和Lidfob),可以证明电解质阴离子会调节SEI的无机组成和产生的特性。通过新的分析时间二级离子质谱法,例如对深度促值的分层聚类和使用综合产量的组成分析,从每个电解质系统产生的SEI的化学组成和形态。值得注意的是,Lidfob电解质提供了一个异常稳定的系统,可实现锂阳极,以0.5 mAh g -1的电流密度传递> 1500个循环,在对称细胞中的容量为0.5 mAh g -1。此外,LI //使用该电解质的LFP细胞表现出高速率,可逆的锂储存,提供139 mAh g(LFP)-1
放射性分子束最近由于它们在原子,分子和核物理学之间的跨学科定位而获得了流行性[1-4]。分子含有重度放射性同位素,例如actinides的分子,提供了独特的研究机会,例如,持续搜索强电荷共轭(C)和均等(P)违规[5-8]或电子的电子偶极力矩[9]。在放射性离子束(肋骨)设施中,热腔靶和射频四极冷的束束中的分子形成感兴趣[10-12]。原始核素232 th,其半衰期为1的α衰变。4×10 10年,是宏观量量不需要肋骨设施的少数acttinide物种之一。有理由认为,thor的气相化学(以及铀)经常进行[13 - 17],这不仅是因为它需要比actacinide系列的更高度放射性元素的辐射保护效果明显少得多[18]。的兴趣也源于对核时钟的不断追求,该追求可以通过第229同位素的低能同构体状态实现[19-22]。分子包含此同位素被预测是测试CP侵略理论并寻找轴的理想实验室[23]。然而,对较大的or骨分子的高分辨率质谱研究很少,涉及气相阴离子的质谱研究也很少。
通过与 NHESP 的预提交会议,项目提案中已纳入了避免、减少和减轻对布兰丁龟栖息地的影响。作为步道改进的一部分,现有的 Haggetts Pond 泥土停车场和 High Plain 停车场将铺设路面,以创建 28 个停车位(每个停车场 14 个停车位)。铺设区域(停车场和步道)和相邻路段(目前未接受雨水处理)的雨水将通过地下雨水管理设备进行管理。拟建的沥青步道将完全位于现有铁路路基步道(铁路路基道碴上的压实有机材料)的覆盖范围内。不会对湿地产生直接影响,也不会为了修建步道而砍伐优先栖息地内的成熟树木,但提议砍伐北部停车场的一些树木。步道修建完成后,将恢复受干扰的区域,并按照意向通知和随后的文件中所述对同行评审意见进行栖息地改善。小径边缘将铺上壤土,并播种耐阴的野生动物或传粉媒介种子混合物,并将种植甜胡椒(Clethra alnifolia)以改善小径附近两个春池周围的植被覆盖。
摘要:背景:我们的研究旨在描述与 COVID-19 疫苗、种族和族裔相关的推文主题,以探索这些主题在 Twitter 上的交集背景。方法:我们利用 Twitter 的流应用程序编程接口 (API) 从 2020 年 10 月到 2021 年 1 月随机收集了 1% 的公开推文样本。研究小组对 1110 条推文的完整数据集进行了定性内容分析。结果:这些推文通过肯定疫苗、通过谴责倡导、需要疫苗、COVID-19 和种族主义、疫苗开发和有效性、种族主义疫苗幽默和新闻更新揭示了对疫苗的反对。疫苗反对通过直接反对、疫苗犹豫和不良反应表现出来。阴谋和错误信息包括科学错误信息、政治错误信息、对免疫和保护行为的信念以及种族灭绝阴谋。公平与获取侧重于克服医疗种族主义的历史,指出健康差距,以及促进疫苗获取的因素。代表们赞扬发展和榜样的自豪感,政治讨论了政治在疫苗和国际政治中的作用。结论:我们的分析表明,Twitter 可以提供与种族和民族有关的疫苗的多种观点的细微差别,并有助于为公共卫生信息传递提供见解。