对大脑神经活动进行多通道电记录是一种越来越有效的方法,它揭示了神经通信、计算和假肢的新方面。然而,虽然传统电子产品中平面硅基 CMOS 器件的规模迅速扩大,但神经接口器件却未能跟上步伐。在这里,我们提出了一种将硅基芯片与三维微线阵列连接起来的新策略,为快速发展的电子产品和高密度神经接口提供连接。该系统由一束微线组成,这些微线与大规模微电极阵列(如相机芯片)配对。该系统具有出色的记录性能,通过在清醒运动小鼠的孤立视网膜和运动皮层或纹状体中进行的单个单元和局部场电位记录得到了证明。模块化设计使各种类型和尺寸的微线能够与不同类型的像素阵列集成,将商业多路复用、数字化和数据采集硬件的快速发展与三维神经接口连接在一起。
生日 — 坚持不懈终有回报。一旦你有了动力,看到结果只是时间问题。射手座(11 月 23 日至 12 月 21 日)— 你的才华和努力将得到认可。回报将激发你的斗志,推动你争取更高的荣誉。摩羯座(12 月 22 日至 1 月 19 日)— 你有一条清晰的道路可以将你的梦想变成现实。不要害怕改变;采取行动,让它发挥作用。水瓶座(1 月 20 日至 2 月 19 日)— 不要分享个人信息、秘密或任何可能损害你声誉的事情。双鱼座(2 月 20 日至 3 月 20 日)——谨慎选择与谁交往。有人会利用你的慷慨和善良来利用你。白羊座(3 月 21 日至 4 月 19 日)——承担额外的工作,赚取额外的现金,以帮助支付年终费用。你的热情会给你的老板或新客户留下深刻印象,也会带来丰厚的回报。金牛座(4 月 20 日至 5 月 20 日)—— 相信你有能力完成任务。如果你想改变,那就成为实现它的人。全速前进!双子座(5 月 21 日至 6 月 20 日)——观察别人的行为和言论,但不要发表你的想法或意见。你应该保密,直到你弄清楚其他人的计划。巨蟹座(6 月 21 日至 7 月 22 日)——努力为你的社区做出贡献。以创新的方式应对挑战,并发挥领导作用。狮子座(7 月 23 日至 8 月 22 日)——投入更多有意义的思考和行动,思考如何取悦你所爱的人,而不会负债累累。处女座(8 月 23 日至 9 月 22 日)——你的知识和经验将得到回报。每个人都想和你一起工作,帮助你实现目标。不要犹豫,走进聚光灯下。天秤座(9 月 23 日至 10 月 23 日)——让生活简单起来,确保你的银行账户盈余,不要泄露你的秘密。不要在压力下屈服,也不要屈服于要求或某人的操纵策略。天蝎座(10 月 24 日至 11 月 22 日)——如果你把工作和娱乐结合起来,就会有令人兴奋的发现。参与活动,向你的同伴展示你的活力和惊喜。
特性由阵列的孔径决定。但是,由于稀疏阵列中的元素数量减少,平均旁瓣电平高于相同孔径的全采样阵列的预期值。假设主瓣幅度为 M,正如预期的那样,对于一个由 M 个标准化和完全局部化的元素组成的阵列,每个元素在主响应轴方向上贡献一个同相矢量。然而,在远离主响应轴的给定方向上,由于元素位置随机,矢量并不同相,而是表现出统计随机相位。单位矢量与随机相位相结合,产生一个均方根 (rms) 幅度为 rm 的旁瓣电平。因此,对于随机阵列,平均旁瓣与主瓣的功率比为 M/MI = 1/M (Lo, 1964, 1965)。
液体分析是跟踪食品、饮料和化学制造等行业是否符合严格的工艺质量标准的关键。为了在线并在最感兴趣的点分析产品质量,自动监控系统必须满足小型化、能源自主性和实时操作方面的严格要求。为了实现这一目标,我们介绍了在神经形态硬件上运行的人工味觉的第一个实现,用于连续边缘监控应用。我们使用固态电化学微传感器阵列来获取多变量、随时间变化的化学测量值,采用时间滤波来增强传感器读出动态,并部署基于速率的深度卷积脉冲神经网络来有效融合电化学传感器数据。为了评估性能,我们创建了 MicroBeTa(微传感器味道测试),这是一个用于饮料分类的新数据集,包含 3 天内进行的 7 小时时间记录,包括传感器漂移和传感器更换。我们实现的人工品味在推理任务上的能效比在其他商用低功耗边缘 AI 推理设备上运行的类似卷积架构高出 15 倍,在 USB 棒外形尺寸中包含的单个英特尔 Loihi 神经形态研究处理器上实现了比传感器读数采样周期低 178 倍以上的延迟和高精度(97%)。
目标:这项研究的目的是提高我们对插入侧壁耳蜗电极阵列涉及的机械的理解。设计:三名经验丰富的外科医生进行了一系列30个插入实验。根据已建立的软手术指南,在先前验证的人工颞骨模型中进行了实验。使用体外设置使我们能够全面评估相关参数,例如插入力,当经压力内压力和精确的电极阵列在受控且可重复的环境中。结果:我们的发现表明,在插入的后半部分中,强烈的后偏压瞬变更频繁,并且重新填充电极阵列是这种现象中的一个明显因素。对于选择最佳插入速度,我们表明,平衡缓慢运动以限制速度限制持续时间的缓慢运动至关重要,以限制震颤引起的压力尖峰,这挑战了一个普遍的假设
我们建议使用二维 Penning 阱阵列作为量子模拟和量子计算的可扩展平台,以捕获原子离子。这种方法涉及将定义静态电四极子位置的微结构电极阵列放置在磁场中,每个位置捕获单个离子并通过库仑相互作用与相邻离子耦合。我们求解此类阵列中离子运动的正常模式,并推导出即使在存在陷阱缺陷的情况下也能实现稳定运动的广义多离子不变定理。我们使用这些技术来研究在固定离子晶格中进行量子模拟和量子计算的可行性。在均匀阵列中,我们表明可以实现足够密集的阵列,轴向、磁控管和回旋加速器运动表现出离子间偶极耦合,其速率明显高于预期的退相干。通过添加激光场,这些可以实现可调范围的相互作用自旋汉密尔顿量。我们还展示了局部电位控制如何隔离固定阵列中的少量离子,并可用于实现高保真门。使用静态捕获场意味着我们的方法不受系统尺寸增加时的功率要求限制,从而消除了标准射频陷阱中存在的重大缩放挑战。因此,这里提供的架构和方法似乎为捕获离子量子计算开辟了一条道路,以实现容错规模的设备。
结果:从2019年到2021年,检测到皮肤分枝杆菌感染的发病率增加。最常见的感染病原体是野马菌,然后是脓肿。皮肤组织培养方法的敏感性,特异性和准确性分别为70%,100%和76.62%,而DNA微阵列CHIP测定法分别为91.67%,100%和93.51%。DNA微阵列芯片测定的灵敏度和准确性显着高于皮肤组织培养方法的灵敏度和准确性。这两种方法的阳性可能性和诊断优势比分别> 10和> 1。与DNA微阵列CHIP分析相比,皮肤培养方法中的负类似然比显着高(30%比8.33%),而Youden的指数显着较低(70.00%vs 91.67%)。假阴性结果与皮肤组织培养方法中使用抗生素的史存在显着关联。
CMS沿着大型强子对撞机环位于CERN。它以40 MHz的速率记录了质子质子碰撞的质子胶原碰撞。每个事件记录来自〜10 2 M传感器的信息。多亏了触发系统,每秒仅保存100K事件。〜6 GB/s输出。
摘要 — 双态天线大规模平面阵列的设计有助于在最小化旁瓣电平 (SLL) 和控制第一零波束宽度 (FNBW) 变化的约束下使用遗传算法来降低能耗。通常,平面阵列用于基于电池使用的通信应用,例如便携式雷达。本文使用实数编码遗传算法 (RCGA) 优化了具有 1600 个相同天线元件的均匀矩形阵列 (URA)。执行优化过程是因为以 ON-OFF 状态的形式找到辐射元件电流激励权重的最佳集合以节省消耗的功率。因此,选择了阵列因子 (AF) 的最高性能和所需的波束宽度。本文提出的主要贡献是能够使用 RCGA 算法通过将阵列划分为阵列子集来优化大量阵列元素。执行模拟结果以验证遗传稀疏 URA 的有效性。通过选择能够高效加扰的天线元件,相当于节省了 24.4% 的能耗。本文使用 MATLAB CAD Ver. 2018a 作为平台获得了结果。索引术语 —RCGA、节能、规划器阵列、成本函数、双态天线。