图 1 多焦点打印的不同光束分裂方法概览。a 宽带激光束照射衍射光学元件 (DOE) 并衍射成两个衍射级的渲染图。与波长相关的衍射角使入射光束散开。b 渲染图显示多透镜阵列 (MLA),该阵列将入射红色高斯激光束的一小部分聚焦到焦点阵列中。一半的入射激光功率被传输而不会影响焦点阵列。c 入射红色激光束照射 DOE 并在单个光束中衍射的渲染图。使用宏观透镜,每个光束被引导到由单独的微型透镜组成的 MLA 的单个透镜上。这些透镜进一步聚焦每个光束,有效地增加和创建可用于多光子多焦点 3D 打印的焦点阵列(焦点扩展函数仅有微小扩展)。
1美国密歇根大学生物医学工程系,美国密歇根州安阿伯市,美国48109,美国2分子,蜂窝和发育生物学系,密歇根州密歇根州安阿伯市,密歇根州安阿伯市48019美国密西西比州安阿伯市,美国美国公里48109 5 5神经外科系,密歇根大学医学院,安阿伯,安·阿伯,密歇根州安阿伯市,美国48109,美国6日6神经病学系,密歇根大学医学院,密歇根大学,密歇根大学48109,美国,美国,美国纽约市,美国纽约市,美国48109.密歇根州医学院,美国密歇根州安阿伯市48019,美国9号电气工程与计算机科学系,密歇根大学,安阿伯,密歇根州安阿伯,密歇根州48109,美国美国10机器人计划,密歇根大学,安阿伯,安阿伯,密歇根州安阿伯市,密歇根州48109,美国48109,美国美国11号共同作者。∗作者应向谁解决任何信件。
摘要:门控ZnO纳米线场发射阵列在平板X射线源、光电探测器等大面积真空微电子器件中有着重要的应用。由于应用需要高像素密度的场发射阵列,因此需要研究像素密度对门控ZnO纳米线场发射性能的影响。本文模拟了在保持横向几何参数成比例的情况下不同像素尺寸下同轴平面门控ZnO纳米线场发射阵列的性能,获得了发射电流和栅极调制随像素尺寸的变化曲线。利用所获得的器件参数,制备了同轴平面门控ZnO纳米线场发射阵列。场发射测量结果表明,当栅极电压为140 V时,制备的ZnO纳米线场发射阵列的电流密度为3.2 mA/cm 2,跨导为253 nS,表明栅极控制有效。性能的提高归因于优化的栅极调制。
摘要:现代高通量纳米图案化技术(如纳米压印光刻技术)使得在大面积基底(cm 2 至 m 2 规模)上制造纳米结构阵列(尺寸为 10 至 100 纳米的特征)成为可能,例如硅晶片、玻璃片和柔性卷对卷网。制造这种大面积纳米结构阵列 (LNA) 的能力创造了广阔的设计空间,实现了广泛的应用,包括光学设备(例如线栅偏振器、透明导体、彩色滤光片和抗反射表面)以及电子元件的构建块(例如超级电容器、传感器和存储器架构)。然而,现有的计量方法将难以与制造方法一起扩展。例如,扫描电子显微镜 (SEM) 和原子力显微镜 (AFM) 具有微米级视场 (FOV),这妨碍了对以每分钟平方米的速度制造的 LNA 进行全面特性分析。散射测量方法具有更大的 FOV(通常为几百微米到几毫米),但传统散射测量系统一次只测量一个点的样品,这也使得它们对于大规模 LNA 制造来说太慢。在这项工作中,我们展示了使用高光谱成像对传统光谱散射测量方法进行并行化,将该技术的吞吐量提高了 106-107 倍。我们通过使用高光谱成像和反射光谱的逆向建模来展示这种方法,以微米级空间分辨率获得毫米和厘米级 Si 纳米柱阵列结构的三维几何数据。这项工作表明,可以对各种 LNA 进行几何测量,并有可能在大面积上实现高速测量,这对于未来的 LNA 制造至关重要。
摘要:近年来,在应用和解码神经活动在药物筛查,疾病诊断和脑部计算机相互作用中的编码和解码应用方面的进展激增。为了克服大脑复杂性的限制以及体内研究的伦理考虑,已经提高了整合微功能设备和微电极阵列的神经芯片平台,这不仅可以自定义体外神经元的生长路径,而且还可以监测和调节碎屑生长的专用神经网络。因此,本文回顾了整合微流体设备和微电极阵列的芯片平台的发展历史。首先,我们回顾了高级微电极阵列和微流体设备的设计和应用。之后,我们介绍了神经芯片平台的制造过程。最后,我们重点介绍了这种类型的芯片平台的最新进展,作为脑科学和神经科学领域的研究工具,重点是神经药理学,神经系统疾病和简化的脑模型。这是对神经芯片平台的详细而全面的评论。这项工作旨在实现以下三个目标:(1)总结此类平台的最新设计模式和制造方案,为开发其他新平台提供了参考; (2)在神经病学领域概括了芯片平台的几个重要应用,这将吸引科学家在领域的注意; (3)提出了整合微流体设备和微电极阵列的神经芯片平台的发展方向。
通过纳米线阵列的毛细管上升润滑实现润滑剂耗尽的抗滑动液体注入多孔表面 Hong Huy Tran、Youngjin Kim、Céline Ternon、Michel Langlet、David Riassetto、* 和 Daeyeon Lee* Hong Huy Tran、Youngjin Kim 博士、Céline Ternon 教授、Michel Langlet 博士、David Riassetto 教授 Univ.格勒诺布尔阿尔卑斯、法国国立科学研究院、格勒诺布尔 INP(格勒诺布尔阿尔卑斯大学工程学院)、LMGP、38000 格勒诺布尔、法国 电子邮件:david.riassetto@grenoble-inp.fr Daeyeon Lee 教授 宾夕法尼亚大学化学与生物分子工程系,宾夕法尼亚州费城 19104,美国 电子邮件:daeyeon@seas.upenn.edu 关键词:液体注入表面、润滑剂消耗、润湿脊、ZnO 纳米线阵列、毛细管作用 尽管润滑剂在各种应用中都具有良好的前景,但随着时间的推移,润滑剂的消耗会带来
面部麻痹(FP)深刻影响着人际关系和情感表达,需要精确的诊断和监测工具以进行最佳护理。但是,当前的肌电图(EMG)系统受其庞大的性质,复杂的设置和对熟练技术人员的依赖的限制。在这里,我们报告了一种创新的生物传感方法,该方法利用了PEDOT:PSS-SODIFIFED浮动微针电极阵列(P-FMNEA)来克服现有EMG设备的局限性。柔软的系统水平力学确保对面部曲线区域的出色构成,从而使靶向的肌肉合奏运动能够检测到面部麻痹评估。此外,我们的设备熟练地捕获了每个电脉冲,以响应神经外科手术过程中的实时直接神经刺激。通过服务器将EMG信号的无线运输到医疗设施中增加了对患者的后续评估数据的访问,促进了及时的治疗建议,并在典型的6个月后续过程中允许访问多个面部EMG数据集。此外,该设备的软机制可以减轻空间复杂性,减轻疼痛的问题,并最大程度地减少与传统针电极定位相关的软组织血肿。这种开创性的生物传感策略有可能通过提供有效的,用户友好且侵入性较低的EMG设备来改变FP管理。这项开创性的技术可以在FP管理和治疗干预中更明智的决策。
基于忆阻器的神经形态计算在高速、高吞吐量信号处理应用(如脑电图 (EEG) 信号处理)中显示出巨大潜力。尽管如此,单晶体管单电阻 (1T1R) 忆阻器阵列的大小受到器件非理想性的限制,这阻碍了大型复杂网络的硬件实现。在本文中,我们提出了深度可分离卷积和双向门循环单元 (DSC-BiGRU) 网络,这是一种基于 1T1R 阵列的轻量级且高度稳健的混合神经网络,通过混合 DSC 和 BiGRU 块,能够在时间、频率和空间域中有效处理 EEG 信号。在确保网络分类准确性的同时,网络规模减小了,网络稳健性提高了。在模拟中,通过统计分析将测得的 1T1R 阵列的非理想性带入网络中。与传统卷积网络相比,在阵列成品率95%、容错率5%的条件下,网络参数减少了95%,网络分类准确率提高了21%。该工作表明,基于忆阻器阵列的轻量级、高鲁棒网络对于依赖低消耗和高效率的应用具有巨大的前景。
摘要:可植入的微电极阵列(MEA)可以记录皮质神经元的电活动,从而允许脑机界面的发展。然而,MES显示在慢性条件下的记录功能降低,促使新型MEA的发展可以改善长期性能。传统的平面,基于硅的装置和超薄的无定形碳化硅(A-SIC)测量植入雌性Sprague-Dawley大鼠的运动皮层中,并在植入后进行每周的麻醉记录。在两种设备类型的植入周期中,比较了1至500 Hz记录的光谱密度和频道。最初,A-SIC设备和标准测量值的带有可比性。然而,在植入后整个16周内,标准测量值显示出体力和功率频谱密度均持续下降,而A-SIC的测量表现出更加稳定的性能。从植入后第6周到研究结束时,标准和A-SIC MEA之间的带能量和光谱密度之间的差异在统计学上是显着的。这些结果支持使用超薄的A-SIC测量来发展慢性,可靠的脑机界面。
多发性骨髓瘤是一种复杂的疾病,呈现不同的临床阶段和风险水平。这些包括不确定意义(MGU)的单克隆性γ-以及多发性骨髓瘤,也称为无症状骨髓瘤。[1] MGU是一种通常的良性疾病,每年约1%至2%的症状性浆细胞疾病转化率。[2]多发性骨髓瘤闷烧代表了从mgus到弗兰克多发性骨髓瘤的发展;在头五年中,它每年都有转化为多发性骨髓瘤的风险。[2]尽管这两个实体都缺乏多发性骨髓瘤的许多临床特征,但它们最终可能具有需要治疗的特征。相比之下,有症状的多发性骨髓瘤由特定的临床症状,血液或尿液中单克隆免疫球蛋白蛋白的积累以及包括肾病和神经病在内的相关器官功能障碍。首字母缩写,螃蟹,用于反映多发性骨髓瘤的标志特征:钙高度;肾功能不全;贫血;以及骨骼疾病。[3]肌瘤前浆细胞最初需要与骨髓微环境相互作用,但是在疾病进展过程中,会发展出在骨髓外增殖的能力,表现为表现为肿瘤外骨髓瘤和血浆细胞白血病。这些“骨髓独立”细胞代表了从正常骨髓瘤到多发性骨髓瘤的多步化过程中的末端阶段。