li-ion电池正达到其范围和成本范围,这是由于范围更大所需的额外重量,导致车辆效率较低,较重。使用锂阳极的下一代SSB提供更轻,较小的包装,提高范围更长的能量密度,更快的充电和减少降解。阶乘能源声称其准固体状态电池将固态电解质的安全性与增强性能和生产能力合并,与当前的锂离子电池相比,EV范围可能会延长高达50%,并使电池重量降低了200磅。固态电池的集成需要与设备制造商进行定制机械和OEM的密切合作,以克服广泛的开发过程和严格的法规。说,虽然今天的锂离子电池受益于硅阳极,但未来是用锂金属的固态电池。汽车制造商正在推动具有较高镍和较低钴含量的较高能量密度的限制,但他们撞到了墙壁,尤其是当锂离子电池达到理论上的限制时,安全就成为一个问题。人工智能(AI)和机器学习正在采用以更好的快速充电。过去降低电池成本的努力依赖于规模经济,但是超过40-60 gwh的工厂,收益减少,基础设施负担增加。这是SSB进入的地方,打破了天花板,以达到更高的能量密度和较低的成本,并有望使EVS更轻,更高效。
抽象密钥消息提出了一个原始的GWAS模型,该模型集成了等位基因的祖先,并允许探测背景特定的添加剂和优势QTL,涉及异性群互补性和混合性能。抽象的玉米遗传多样性被构造成彼此选择和改善的遗传群体。此过程会随着时间的流逝而增加组的互补性和分化,并确保由小组间杂交产生的杂种表现出较高的表现和异性症。为了确定与混合性能和杂种群体互补涉及的基因座,我们引入了一个原始的关联研究模型,该模型将等位基因的异性群的起源与异性构成群体分离,并将其与常规的添加剂/优势模型进行了比较。这个新模型应用于凹痕和弗林特线之间的阶乘,以及具有两种不同分析层的凹痕混合线之间的拨号线:在每个环境中和多种环境中。我们确定了所有特征的几个强大的添加剂QTL,包括一些用于开花时间的众所周知的加性QTL(在染色体8上的VGT1/2区域)。屈服特征在拨号面板中显示出显着的非加性效果。大多数检测到的产量QTL表现出过度势力或更有可能的伪过分效应。在这些QTL上明显过度污染,导致了遗传组互补性的一部分。环境之间的比较显示,添加QTL效应的稳定性高于非添加效应。我们还揭示了显示遗传群起源作用的大型染色体区域。根据局部杂种群的起源,几个QTL显示出效应的变化。总的来说,我们的结果说明了混合面板如何与专用的GWAS建模相结合,允许识别新的QTL,这些QTL无法通过通过传统建模分析的经典混合面板无法揭示的新QTL。
