背景。正在对全恶性疟原虫子孢子 (PfSPZ) 疫苗的疟疾预防效果进行评估。该疫苗通过静脉注射以达到最大效果。PfSPZ 疫苗的直接静脉接种 (DVI) 对成人来说是安全、可耐受且可行的,但对儿童和婴儿的安全数据有限。方法。我们在肯尼亚西部的 Siaya 县进行了一项年龄降级、剂量递增的随机对照试验。儿童和婴儿(年龄为 5-9 岁、13-59 个月和 5-12 个月)被纳入 13 个年龄剂量组,每组 12 名参与者,按 2:1 的比例随机分配接受疫苗或生理盐水安慰剂,剂量逐渐增加:1.35 × 10 5 、2.7 × 10 5 、4.5 × 10 5 、9.0 × 10 5 和 1.8 × 10 6 PfSPZ,两次最高剂量给药,间隔 8 周。在接种疫苗后 8 天内监测主动建议的不良事件 (AE),在 29 天内监测主动建议的 AE,并在整个研究过程中监测严重 AE。使用酶联免疫吸附试验检测接种前和接种后 1 周采集的血液中是否存在针对恶性疟原虫环子孢子蛋白 (PfCSP) 的免疫球蛋白 G 抗体。结果。接种疫苗者和对照组中主动诱导 (35.7% vs 41.5%) 和主动诱导 (83.9% vs 92.5%) 的 AE 发生率相似。未发生相关的 3 级 AE、严重 AE 或 3 级实验室异常。大多数 (79.0%) 疫苗接种由单个 DVI 进行。在 9.0 × 10 5 和 1.8 × 10 6 PfSPZ 组中,45 名接种疫苗者中有 36 名 (80.0%) 和 21 名安慰剂对照组中有 4 名 (19.0%) 产生了针对 PfCSP 的抗体 (P < .001)。结论。剂量高达 1.8 × 10 6 的 PfSPZ 疫苗可以通过 DVI 给婴儿和儿童接种,并且安全、耐受性良好且具有免疫原性。
6.1.6 采用性能保护的鲁棒状态反馈控制律的 8 阶线性直升机模型悬停时,滚转姿态响应(顶部)对横向的响应,俯仰姿态响应(底部)对 1 秒的 10% 纵向脉冲输入的响应。...............。。。。。。。。。。。。。。。。。。。。。。。239
• 对 DIW 晶格进行单轴压缩测试 • 根据所需阶数和优化标准估算参数 • DIW 晶格可以建模为均质固体(无晶格结构),其机械行为由晶格结构决定 • 每个 DIW 晶格都具有长度尺度相关的机械行为
即使经过多年对随机增长模型(如首次和最后一次渗透和定向聚合物)的研究,许多问题在技术上仍然是神秘的或遥不可及的。例如,除了保证通过时间/自由能的线性增长率的基本形状定理之外,还存在亚线性波动,其渐近性尚未建立。即使在平面设置中,对于该设置,推测图景很清晰,但一般工具远不能使其严格。这与可积模型形成鲜明对比,可积模型的波动指数只是已证明的一小部分。在本文中,我们考虑了三个广泛研究的随机增长模型:首次渗透(FPP)、最后一次渗透(LPP)和随机环境中的定向聚合物。虽然这些模型在衡量增长的方式上有所不同,但它们都拥有一个大数定律,即增长率是渐近线性的。然而,更神秘的是亚线性波动。在二维版本中,这些模型被认为属于 Kardar–Parisi–Zhang 普适性类 [30],尤其是增长涨落的阶数为 n 1 / 3。除了 LPP 和定向聚合物具有精确可溶性的特殊情况外,严格的结果与这一目标相去甚远,在某些情况下甚至不存在。本文的目标有两个。首先,我们描述一种通用策略,用于证明随机变量序列(在定义 2.1 中明确定义)涨落阶的下界。该方法改编自第二作者最近在 [23] 中开发的技术。它很通用,因为它可以用于由独立同分布随机变量组成的各种问题,其中不对这些变量的共同分布做出任何假设。其次,我们应用该方法研究平面 FPP、LPP 和定向聚合物的生长涨落。在这三种情况下,我们都能证明 √ log n 阶波动的下限。此外,对于 FPP,我们扩展了形状
摘要 空军研究实验室增材制造建模挑战系列的挑战 4 要求参赛者根据 IN625 试件的实验数据和广泛表征,预测几种特定挑战晶粒在拉伸载荷期间的晶粒平均弹性应变张量。在本文中,我们介绍了解决此问题的策略和计算方法。在比赛阶段,直接使用来自实验的特征化微观结构图像,通过基于遗传算法的材料模型识别方法预测某些挑战晶粒的机械响应。随后,在比赛后阶段,引入了一种基于适当广义分解 (PGD) 的降阶方法来改进材料模型校准。这种数据驱动的降阶方法非常有效,可用于识别力学和材料科学领域中的复杂材料模型参数。已经报告了原始预测和重新校准的材料模型的绝对误差结果。预测表明,整体方法能够处理局部响应识别的大规模计算问题。重新校准的结果和加速表明使用 PGD 进行材料模型校准的前景看好。
摘要 - 该字母提出了一种基于新型的基于载荷调制的3阶间调节失真(IMD3),以取消B类CMOS功率放大器(PAS)。在B类PA中,由3阶跨导率(G M 3)生成的IMD3和增益压缩的符号相反,因此,它们可以在特定的偏置和加载条件下相互取消。doherty拓扑允许通过调节整个负载调制区域的有效加载,促进IMD3取消来调节增益压缩。使用28 GHz 40 nm CMOS系列DOHERTY PA(DPA)拓扑验证所提出的方法。实验结果表明,与B类/DPA操作相比,10/17 dB IMD3的改进。无需使用任何数字前启动时,针对50 MHz 64-QAM OFDM信号的拟议技术的EVM具有8.9 dbm的平均输出功率为-38.7 dB(1.2%),比标准B/DPA的标准类B/DPA运行更好。
使用量子力学作为计算工具的想法源自 20 世纪 80 年代 Feynman 和 Deutsch [1,2] 的开创性工作。它基于利用叠加和纠缠等属性来实现计算任务。这需要一台在微观层面工作的量子计算机。这样,量子计算机可以比传统计算机更有效地解决某些已知问题 [3],从而推动密码学、药物研发、更快的数据分析和人工智能的发展 [4]。谷歌、英特尔、微软和 IBM 等大公司已着手建设量子计算机,如今量子计算机能够处理多达几十个量子比特。特别是,这里使用的 IBM Q 机是一种可扩展的量子计算机,基于超导技术,具有通过互联网开放访问的优势 [5]。已经提出了几种基于量子优势的算法;其中最重要的是 Grover 算法和 Shor 因式分解算法。Grover 算法 [6] 是一种在无序基中查找元素的算法。已知的经典算法的阶数为 O ( N ) ,而量子算法可以以高概率确定所需元素的阶数为 O ( √
摘要 — 本文研究了网络系统的实时优化问题,并开发了在线算法,无需明确了解系统模型即可引导系统朝着最佳轨迹运行。该问题被建模为具有时变性能目标和工程约束的动态优化问题。算法的设计利用了在线零阶原始对偶投影梯度法。具体而言,涉及目标函数梯度的原始步骤(因此需要网络系统模型)被其零阶近似所取代,并使用确定性扰动信号进行两个函数评估。评估是使用系统输出的测量值进行的,从而产生反馈互连,其中优化算法充当反馈控制器。本文对这种互连的稳定性和跟踪特性提供了一些见解。最后,本文将该方法应用于电力系统中的实时最优潮流问题,并展示了其在 IEEE 37 节点配电测试馈线上进行参考功率跟踪和电压调节的有效性。
本文涉及到有限序列的周期性序列,其元素是从有限字母的属性中绘制出的,该特性对于正整数n(阶)(阶)的任何子序列(n-元组)的任何子序列仅在一个时期出现一次。此类序列的一个重要的极端类是de bruijn序列 - 例如,请参见[10,20]。这些序列有时被称为移位寄存器序列(请参见Golomb,[12]),已经进行了广泛的研究,并具有一系列应用,包括在编码和加密中。这里特定相关性的一种应用是位置位置。这涉及将这样一个序列编码到线性表面上,该序列仅通过检查序列的连续n个连续条目就可以在表面上的任何位置进行编码(例如,参见burns和Mitchell [4,5]和Petriu [18])。有关位置序列使用序列的最新工作包括B Chris J. Mitchell me@chrismitchell.net
摘要 - 自主车轮加载器的控制设计需要高实现和低阶动力学模型。降低订单的目的是减少模型中的状态数量,同时保持与原始模型相当的表现。在车轮装载机中的所有功率组件中,由于其非线性和僵硬的动力学性质,转向和工作液压系统的模型订单降低最多。本文描述了一种物理启发的模型订购方法,该方法可以将模型顺序降低近30%。这是通过将快速动态的订单丢弃并将多个状态巩固到较少的新状态中来实现的。此方法也可以扩展到其他类型的越野车,例如挖掘机,推土机等。所提出的方法的模型顺序降低了近30%。仿真结果表明,在车轮装载机的典型操作条件下,还原阶模型表现出与全阶模型非常相似的性能,输出误差小于6%。