摘要:我们表明,量子极值表面 (QES) 处方的简单应用会导致矛盾的结果,必须在领先阶上进行校正。当存在第二个 QES(领先阶的广义熵严格大于最小 QES)并且两个表面之间存在大量高度不可压缩的体积熵时,就会出现校正。我们将校正的来源追溯到 QES 处方的复制技巧推导中使用的假设失败,并表明更仔细的推导可以正确计算校正。使用一次性量子香农理论(平滑最小和最大熵)的工具,我们将这些结果推广到一组确定 QES 处方是否成立的精炼条件。我们发现了对纠缠楔重构(EWR)所需条件的类似改进,并展示了如何将 EWR 重新解释为一次性量子态合并(使用零位而不是经典位)的任务,重力能够以最佳效率实现这项任务。
摘要:设计并制作了一种基于复合右手-左手 (CRLH) 原理的小型零阶谐振天线,在 30 GHz 下无需金属通孔即可实现贴片状辐射。将两个 CRLH 结构的镜像连接起来以设计无通孔天线。研究了等效电路、参数提取和色散图,以分析 CRLH 天线的特性。制作了天线并通过实验验证。测得的天线在 30 GHz 下的实际增益为 5.35 dBi。设计的天线在 10 GHz 带宽内没有杂散谐振。利用所提出的 CRLH 天线和 Butler 矩阵设计了一个无源波束形成阵列。采用基板集成波导来实现 Butler 矩阵。CRLH 天线连接到 4×4 Butler 矩阵的四个输出。对于馈送 CRLH 天线的 4×4 Butler 矩阵,从端口 1 到端口 4 的激励,扫描角度分别为 12 ◦、−68 ◦、64 ◦ 和 −11 ◦。
Tejado等人,2011年指出,需要准确的控制器以确保在导航期间安全。他们着重于设计用于雪铁龙自动型原型的低速控制的分数PI控制器的实现。他们得出结论,测试显示了提出的控制器的有效性[1]。Cohring,2012年为德国自动驾驶汽车提供了实时控制器体系结构。他描述了一种算法,证明了其在柏林茂密的城市交通中的适用性[2]。Alonso,Oria,Al-Hadithi和Jimenez,2013年,2013年提出了一个在线自我调整的PID控制器,用于控制车辆,沿着距离和速度在城市交通中典型的速度和速度。他们提出了一种调整技术,以改善不同输入或噪声存在下的鲁棒性[3]。
摘要:使用基于范德华校正的密度功能理论(Rev-VDW-DF2函数),使用使用机器学习的原子质势模拟了温度诱导的相变和离子电导率。阶 - 疾病相变的模拟温度,晶格参数,扩散,离子电导率和激活能与实验数据非常吻合。我们对Li 2 B 12 H 12的模拟发现了[B 12 H 12] 2-阴离子的重新定位运动的重要性。在有序的α-相(t <625 K)中,这些阴离子具有明确的方向,而在无序的β-相(t> 625 K)中,它们的方向是随机的。在空缺系统中,观察到其完整的旋转,而在理想的晶体中,阴离子显示有限的vabrational运动,表明没有动态无序的相位过渡的静态性质。使用机器学习间的原子势使我们能够以长(纳秒尺度)分子动力学研究大型系统(> 2000个原子),从头开始质量。关键字:密度功能理论,机器学习间原子潜能,固体电解质,相变,离子电导率
3D对应关系,即一对3D点,是计算机视觉中的一个有趣概念。配备兼容性边缘时,一组3D相互作用形成对应图。此图是几个最新的3D点云注册方法中的关键集合,例如,基于最大集团(MAC)的一个。但是,其特性尚未得到很好的理解。因此,我们提出了第一项研究,该研究将图形信号处理引入了对应图图的域。我们在对应图上利用了广义度信号,并追求保留此信号的高频组件的采样策略。为了解决确定性抽样中耗时的奇异价值分解,我们采取了随机近似采样策略。因此,我们方法的核心是对应图的随机光谱采样。作为应用程序,我们构建了一种称为FastMAC的完整的3D注册算法,该算法达到了实时速度,而导致性能几乎没有下降。通过广泛的实验,我们验证了FastMac是否适用于室内和室外基准。例如,FastMac可以在保持高recistra-
很长一段时间以来,土著社会被排除在数学史领域(D'Ambrosio,1985,2001)。直到几十年前,科学的历史学家和哲学家确实抛弃了他们的研究领域,经常赋予口头传统的小规模和/或土著社会。The prevalence of the evolutionist (Tylor, 1871) and “prelogical thought” (Lévy-Bruhl, 1910) theories, arguing that these peoples had a lesser ability to abstract and generalize than ours, appears to have durably impeded the recognition of genuine mathematical practices carried out in the various indigenous societies worldwide (Vandendriessche,即将到来的2021)。在20世纪下半叶初,在这个问题上发生了重大的认识论变化,这是通过人类学家克劳德·莱维·斯特劳斯(ClaudeLévi-Strauss)的工作促进的。后者的认识论破裂似乎促使研究(在1970年代)的发展现在通常被认为是建立民族心理学的开创性作品(Vandendriessche&Petit,2017年)。这个新生的跨学科研究领域的当前发展有助于进一步扩大我们对数学知识及其历史的看法,同时在图片中包括所有在社会群体/社会中表现出的数学特征的所有活动,通常不被认为是这样的。在地球的各个土著社会中,数学并不是通常作为自治知识类别。(Rivers&Haddon 1902,Deacon&Wedgwood,1934年,Austern 1939,Lévi-Strauss 1947,Pinxten等人。然而,正如许多关于“传统”社会的民族志都表明,在整个20世纪,在其各种实践中(例如日历或装饰品的制作,营地和住宅的建立,纺织品生产,导航,接航,游戏,游戏,游戏,游戏,1983,Gladwin 1986,Mackenzie 1991,Desrosiers,2012,Galliot 2015…)。因此,eTnomecatians的一个主要认识论问题是确定其中一些实践与数学活动以及如何相关的程度。为了避免受到“数学一词的西方涵义”的约束,玛西娅·阿什尔(Marcia Ascher,1935-2013)是1990年代民族心理学的创始人之一,引入了“数学思想”的概念。数学思想被定义为涉及“数字,逻辑和空间配置,尤其是这些思想在系统或结构中的布置”的想法(Ascher,1991:3)。Ascher基于使用建模工具的使用开发了一种方法,旨在揭示与
1 代数结构与应用研究组,阿卜杜勒阿齐兹国王大学科学与艺术学院数学系,拉比格 21911,沙特阿拉伯;abdulnadimkhan@gmail.com 2 代数结构与应用研究组,阿卜杜勒阿齐兹国王大学科学学院数学系,吉达 21589,沙特阿拉伯;analahmadi@kau.edu.sa (ANA);whbasaffar@kau.edu.sa (WB);jwph@sussex.ac.uk (JWPH);hashoaib@kau.edu.sa (HS) 3 弗林德斯大学科学与工程学院,阿德莱德,SA 5001,澳大利亚; david.glynn@flinders.edu.au 4 Dhirubhai Ambani 信息与通信技术研究所,Gandhinagar 382007,古吉拉特邦,印度;mankg@computer.org 5 I2M,(法国国立科学研究院,艾克斯-马赛大学,马赛中央理工学院),163 Avenue de Luminy,13009 马赛,法国 * 通讯地址:arifraza03@gmail.com(MAR);patrick.sole@telecom-paris.fr(PS)
Site Forchheim, Bavaria Site Berlin, Berlin Fraunhofer Project Center for Energy Storage and Systems ZESS, Braunschweig, Lower Saxony Fraunhofer Technology Center High-Performance Materials THM, Freiberg, Saxony Fraunhofer Smart Ocean Technologies SOT research group, Rostock, Mecklenburg-Western Pomerania Biological Materials Analysis research group at Fraunhofer IZI, Lipsia, Saxony Circular Carbon Technologies KKT research group Freiberg, Saxony Cognitive Material Diagnostics project group, Cottbus, Brandenburg Fraunhofer Center for Smart Agriculture and Water Management AWAM, Porto, Portugal Battery Innovation and Technology Center BITC, Arnstadt, Thuringia Industrial Hydrogen Technologies Thuringia WaTTh, Arnstadt,图里亚应用中心水,赫姆斯多夫,图林雅应用中心膜技术,施马尔登,图林雅