b' 清晰划分产权线(包括产权线的方位和尺寸) 前线、侧线和后线 通行权加宽区和/或日光三角形(加宽区的大小需标注并注明\xe2\x80\x9将专供汉密尔顿市用于通行权加宽目的的土地\xe2\x80\x9d) 任何地役权、通行权和道路保护区的位置和范围 相邻街道名称 任何现有建筑物或结构的位置(包括保留或拆除建筑物的注明) 现有和拟议水电线杆/水库等的位置 相邻地产上现有建筑物的位置或轮廓 建筑物入口和出口 如果拟议开发项目要分阶段开发,则应显示分阶段线和每个阶段的开发细节图表。在图纸上包括承诺(参见第 \xe2\x80\x9cX\xe2\x80\x9d 页)在图纸上包括场地规划注释(参见第 \xe2\x80\x9cY\xe2\x80\x9d 页)在图纸上包括场地统计表,如下所示:'
摘要这项工作提出了RX前端结构,该结构用于25 GB/S高速链路的通道均衡。此设计包括两个部分,即线性均衡器和决策反馈均衡器。线性均衡器由可变增益放大器,连续时间线性均衡器和输出缓冲液组成,后者在Nyquist频率周围提供19 dB峰值增益。在缓冲区后将带有投机性水龙头的半率决策反馈均衡器被级联,以消除残留的符号间干扰。电路布局在65 nm CMOS中设计的0.005 mm 2面积,其功率消耗为96 MW,低于1.2 V电源。设计用于均衡FR-4背板通道,其中插入损失在12.5 GHz时达到35 dB。结果表明,接收器信号的电压率和时间边距分别达到10 -12的BER。关键词:RX前端,线性均衡器,决策反馈均衡器,背板渠道,插入损失,BER分类:集成电路
在发展中国家的农村和离网地区,为确保所有人都能获得清洁且负担得起的电力而做出的努力一直在缓慢推进。在这种情况下,混合微电网可以为偏远地区提供可靠且潜在的清洁电力。然而,这些系统的规划和运营过程面临着一些挑战,通常是由于与可再生资源相关的不确定性以及农村电力消费的随机性。本文解决了这个问题,并通过确定一个开源建模框架并将其应用于真实的本地数据,为弥合现场实践和两阶段随机建模方法之间的差距做出了贡献。作为参考案例研究,我们考虑了 2015 年在玻利维亚建造的一个微电网。总体而言,最佳系统是净现值成本、安装的峰值容量和灵活性(平衡可变发电)之间的折衷。测试了不同的孤立微电网规模方法,得出的结论是,考虑需求和可再生能源发电的不确定性的方法可能会带来更为稳健的配置,而对社区的最终成本影响较小。