This research was conducted by the RIKEN TRIP Initiative, and was conducted by the Japan Society for the Promotion of Science (JSPS) Science Research Funded Funded Research Project (S), "New Generation Magnetic Induction in Magnetic Conductors (Principal Investigator: Tokura Yoshinori, 23H05431)," and the Basic Research (A) "Theoretical Research on Quantum Nonlinear Response (Principal Investigator: Naganaga Naoto, 24H00197)," and the Academic Change Area Research (A) "Theory of Chimeric Quasiparticles (Principal Investigator: Murakami Shuichi, 24H02231)," and the Japan Science and Technology Agency (JST) Strategic Creative Research Promotion Project CREST "Electronic Quantum Phase Control Using Nanospin Structures (Principal Investigator: Naganaga Naoto, JPMJCR1874)"这一事件得到了针对Skyrmion的新拓扑磁科学的支持(主要研究者:U Shuzhen,JPMJCR20T1)。主持人/机构计数器 *请与主持人联系以获取有关研究内容的信息。 Riken研究人员Max T. Birch,基础科学专科研究员,密切相关的量子传导团队,新兴材料科学中心,Riken Research Institute,团队负责人Tokura Yoshinori(东京/东京大学/东京大学教授)
具有钙钛矿和相关结构的第一行 (3d) 过渡金属氧化物 (TMOs) 为发现新奇的量子现象提供了肥沃的土壤,因为自旋、电荷、轨道和晶格自由度之间有着密切的相互作用 [1-3]。在铜氧化物中发现非常规高温超导性是最著名的例子之一 [4-6],因此它鼓励人们不断努力在 3d TMO 中寻找更多非常规超导系统。作为元素周期表中与铜最近的邻居,镍氧化物 (镍酸盐) 自 20 世纪 90 年代初以来就作为高温超导最有希望的候选者而备受关注 [7-9]。然而,直到最近才在该方向取得实验突破。 2019年,Li等人利用CaH 2通过钙钛矿相的拓扑还原反应成功合成了空穴掺杂的无限层Nd 1-x Sr x NiO 2 薄膜,并发现了𝑇 c 在9 ~ 15 K左右的超导性[10-12]。这一发现引发了许多关于铜酸盐和镍酸盐之间相同点和不同点的理论讨论[13-16]。后来发现,在12.1 GPa下,Pr 0.82 Sr 0.18 NiO 2 薄膜的𝑇 c 可以提高到30 K以上,这凸显了进一步提高超导镍酸盐𝑇 c 的潜力[17]。
几何受挫 (GF) 磁体由局部磁矩、自旋组成,其方向无法同时最小化它们的相互作用能。此类材料可能承载新颖的物质相,例如称为量子自旋液体的类流体状态。与所有固态系统一样,GF 磁体具有随机分布的杂质,其磁矩可能在低温下“冻结”,使系统进入自旋玻璃态。我们分析了 GF 材料中自旋玻璃转变的现有数据,发现了一个令人惊讶的趋势:玻璃转变温度随杂质浓度的降低而升高,并在以前未确定的“隐藏”能量尺度上达到无杂质极限的有限值。我们提出了一种情景,其中相互作用和熵的相互作用导致介质磁导率的交叉,有助于玻璃在低温下冻结。这种低温的“发光”相可能会掩盖甚至破坏相当干净的系统中广泛寻找的自旋液体状态。
6。S. Feng,C。Qin,K。Shang,S。Pathak,W。Lai,B。Guan,M。Clements,T。Su,G。Liu,H。Lu,R。P. Scott和S. J.225
摘要 - 理解大脑中复杂的神经相互作用对于推进诊断和治疗策略至关重要。帕金森病(PD)是由多巴胺不足引起的神经退行性疾病,会影响大脑大面积的网络水平性能。这项研究介绍了一种新型的脑电图(EEG)数据分析方法,研究了theta-gamma跨频率相位振幅耦合(PAC)的时间动力学(PAC),通过使用有向图网络。该方法是特别开发的,可以将PD患者与健康对照区分开。我们首先测量脑电通道对之间的PAC,以构建一个有向图,该图指示不同大脑区域之间的方向相互作用。然后,通过分析该图的结构特征,例如节点聚类和跨时间的有效路径长度,我们提出了图形特征作为诊断标记,以分类来自健康对照的PD患者。结果表明,PD患者和对照组的有向图有显着差异,路径长度和连通性模式的改变表明神经通信中断。这些发现强调了基于PAC的脑电图数据采用定向图分析的潜力,以发现由PD等神经系统疾病引起的神经机制的变化。
摘要:设计并制作了一种基于复合右手-左手 (CRLH) 原理的小型零阶谐振天线,在 30 GHz 下无需金属通孔即可实现贴片状辐射。将两个 CRLH 结构的镜像连接起来以设计无通孔天线。研究了等效电路、参数提取和色散图,以分析 CRLH 天线的特性。制作了天线并通过实验验证。测得的天线在 30 GHz 下的实际增益为 5.35 dBi。设计的天线在 10 GHz 带宽内没有杂散谐振。利用所提出的 CRLH 天线和 Butler 矩阵设计了一个无源波束形成阵列。采用基板集成波导来实现 Butler 矩阵。CRLH 天线连接到 4×4 Butler 矩阵的四个输出。对于馈送 CRLH 天线的 4×4 Butler 矩阵,从端口 1 到端口 4 的激励,扫描角度分别为 12 ◦、−68 ◦、64 ◦ 和 −11 ◦。
Tejado等人,2011年指出,需要准确的控制器以确保在导航期间安全。他们着重于设计用于雪铁龙自动型原型的低速控制的分数PI控制器的实现。他们得出结论,测试显示了提出的控制器的有效性[1]。Cohring,2012年为德国自动驾驶汽车提供了实时控制器体系结构。他描述了一种算法,证明了其在柏林茂密的城市交通中的适用性[2]。Alonso,Oria,Al-Hadithi和Jimenez,2013年,2013年提出了一个在线自我调整的PID控制器,用于控制车辆,沿着距离和速度在城市交通中典型的速度和速度。他们提出了一种调整技术,以改善不同输入或噪声存在下的鲁棒性[3]。
摘要:使用基于范德华校正的密度功能理论(Rev-VDW-DF2函数),使用使用机器学习的原子质势模拟了温度诱导的相变和离子电导率。阶 - 疾病相变的模拟温度,晶格参数,扩散,离子电导率和激活能与实验数据非常吻合。我们对Li 2 B 12 H 12的模拟发现了[B 12 H 12] 2-阴离子的重新定位运动的重要性。在有序的α-相(t <625 K)中,这些阴离子具有明确的方向,而在无序的β-相(t> 625 K)中,它们的方向是随机的。在空缺系统中,观察到其完整的旋转,而在理想的晶体中,阴离子显示有限的vabrational运动,表明没有动态无序的相位过渡的静态性质。使用机器学习间的原子势使我们能够以长(纳秒尺度)分子动力学研究大型系统(> 2000个原子),从头开始质量。关键字:密度功能理论,机器学习间原子潜能,固体电解质,相变,离子电导率