HVAC 部门 Heil 供暖和空调设备 Comfort Star PTAC 通用加湿器 Fantech 风扇 Cladlite 冷凝垫 Trion 电子空气净化器 蛋箱面板 White Rodgers 控制线路套件 Beacon Morris 单元加热器 制冷剂 R22 和 R410A 铜管 Diversitech 配件 Aero-Flo 增压风扇 镀锌板 调节器和格栅 Metalbestos 燃气通风口和烟囱 Quietflex 玻璃纤维管道衬里和粘合剂 玻璃纤维管道包裹 柔性铝管道 管道板 开槽工具 Hy-C 烟囱盖 Elgen 连接器和硬件 Laundra 通风口 Bassett 支架 Air Tite 配件 恒温器线焊料 HVAC 零件 Ritchie 制冷产品 Malco 工具和 Zip-In 螺钉 Midwest 剪钳 Tennsmith 机械 Roper-Whitney Flagler Gripnail 紧固系统 Tin Knocker 机械 Thermo-Pan EWC 区域控制和阻尼器 Lux 温控器/Confortstat 铜配件 Dormont 柔性燃气连接器 黑铁配件 PVC 管和配件 Greenheck 风扇 现场控制 电机 线圈清洁器 Thermaflex SLP-10 Bostich 订书机和订书钉
1) 空中运输建模,包括运输飞机内部的货物运动限制 a。地板摩擦和约束 b。重力下降模型 c。 飞机坡道的弹射模型 2) 弹射座椅模型包括: a。 火箭/弹射器性能 b。 DRI 和类似的暴露计算 3) 重要的货物模型,包括: a。包括多个马赫数和 AOA 表的高端空气动力学模型 b。用于重新定位模拟的多个线束连接点模型 c。 与其他客户(如 NASA)的空气动力学数据库非常接近的空气动力学数据库 4) 轨迹重启功能大大减少了使用多个降落伞完成轨迹的工作量 5) 通过完成基本 DCLDYN 工具的外循环进行蒙特卡罗分析 6) 提供额外功能的重要变体,包括: a。客户可交付模拟,旨在附加到客户模拟 i。完全 6 自由度降落伞 ii。从客户模拟调用,为飞行模型提供高保真降落伞模型 b。 重新定位变体,在集群汇合和车辆之间提供高保真度的降落伞安全带 i。包括安全带释放和阻尼器输入通道,用于研究动态机动和潜在控制。7) 使用 FEA 工具,适当完成上述任务 a。降落伞的刚性和柔性表示之间的差异
•在德国跑车的高级模型中,阻尼技术的第一卷生产应用•主动底盘技术在转向,加速和制动操作期间减少了车辆的投球和滚动•ZF是行业领导者,具有25年的电子控制底盘阻尼系统开发Friedrichshafen的经验。潮湿技术的新时代已经开始,因为ZF的Smotion现在正在将稳定性和动态融合在一起,以提高舒适性和驾驶性能。这个革命性系统将阻尼力完全适应相应的驾驶状况,同时还为每个车轮启动非常快速的垂直运动,从而积极抬起车辆以确保最佳的道路持有性能,同时增强更愉快的驾驶体验。Smotion的这种能力创造了独特的驾驶体验。该系统的阻尼器技术现已用于两种新的德国高级制造商的新型号。在汽车底盘的情况下,将出色的动态特性与高级舒适性相结合通常是具有挑战性的。对汽车制造商来说更容易,因为几乎消除了动态转向,制动和加速的投球和滚动操作。“我们完全活跃的Smotion底盘系统几乎可以在某些驾驶情况下完全防止车身运动,” ZF管理委员会成员,底盘解决方案部门负责人Peter Holdmann博士解释说。“同时,配备了Smotion的车辆的舒适特性大大增加。”
1) 空中运输建模,包括运输飞机内部的货物运动限制 a。地板摩擦和约束 b。重力下降模型 c。 飞机坡道的弹射模型 2) 弹射座椅模型包括: a。 火箭/弹射器性能 b。 DRI 和类似的暴露计算 3) 重要的货物模型,包括: a。高端空气动力学模型,包括多个马赫数和 AOA 表 b。用于重新定位模拟的多个线束连接点模型 c。 与其他客户(如 NASA)的空气动力学数据库非常接近的空气动力学数据库 4) 轨迹重启功能大大减少了使用多个降落伞完成轨迹的工作量 5) 通过完成基本 DCLDYN 工具的外循环进行蒙特卡罗分析 6) 提供额外功能的重要变体,包括: a。客户可交付模拟,旨在附加到客户模拟 i。完全 6 自由度降落伞 ii。从客户模拟调用,为飞行模型提供高保真降落伞模型 b。 重新定位变体,在集群汇合和车辆之间提供高保真度的降落伞安全带 i。包括安全带释放和阻尼器输入通道,用于研究动态机动和潜在控制。7) 使用 FEA 工具,适当完成上述任务 a。降落伞的刚性和柔性表示之间的差异
摘要:我们在自由衰减跌落试验中研究了球形浮标的升沉运动。我们采用了一种综合方法来研究浮标的振动,包括实验测量和互补的数值模拟。实验是在配备一系列高速运动捕捉摄像机和一组高精度波浪仪的波浪池中进行的。模拟包括三组复杂程度不同的计算。具体来说,在一组计算中,流体体积 (VOF) 方法用于求解重叠网格上的不可压缩两相 Navier-Stokes 方程,而其他组中的计算则基于 Cummins 和质量弹簧阻尼器模型,这两个模型都植根于线性势流理论。实验数据与 VOF 模拟结果之间表现出极好的一致性。尽管准确性较低,但这两个降阶模型的预测也被发现相当可信。关于浮标的运动,所得结果表明,浮标从大约等于其静态平衡吃水高度(约为其半径的 60%)释放后,经历了近乎谐波阻尼的振动。进行的分析表明,浮标的吃水长度对振动的频率和衰减率有很大影响。例如,与平衡状态下半浸没的相同尺寸的球形浮标(即吃水等于半径)相比,测试浮标的振动周期大约短 20%,其振动幅度衰减速度几乎是每个周期的两倍。总体而言,本研究为浮球的运动响应提供了更多见解,可用于优化能量提取浮标设计。
emagram(更好地提及Skewt热力学图)实际上是一个简单的XY图。x轴表示温度t和温度露点TD的值(即湿度)和y轴压力和距离单元中的高度。x轴向下倾斜,以使垂直于x的等温线向右倾斜。见图1。在真正的emagram上,x轴未表示,即灰色区域是隐藏的。仅显示等温线和等温线以及其他三种线条,我不会说这些线路不会使事情变得复杂。然后将TD的红色曲线和TD的蓝色曲线放在该图上,并像当地大气状态的快照一样,在精确的位置和力矩上构成大气的气氛。回想一下,TD是我们必须减少空气中的温度,以便在液体水中发生凝结。td可以相等(饱和态度)或小于T,但永远不会更大。在确定的高度上,T和TD之间的差异称为“扩散”。较小的是传播意味着阻尼器是空气,更多的风险有云和/或雨水。这两条曲线可以在或多或少厚的垂直部分中合并(充满水分的空气),但绝不是蓝色曲线在红色曲线的右侧。Emagram是气象学家的有用的2D幻灯片规则。,如果您在以前阅读了有关CBL(对流边界层)的信息(请参阅同一网站www.soaringmeteo.ch中的CBL)更好地理解以下文本。
摘要:我们在自由衰减跌落试验中研究了球形浮标的升沉运动。采用综合方法研究浮标的振动,包括实验测量和互补数值模拟。实验是在配备一系列高速运动捕捉摄像机和一组高精度波浪仪的波浪池中进行的。模拟包括三组复杂程度不同的计算。具体来说,在一组计算中,流体体积 (VOF) 方法用于在重叠网格上求解不可压缩的两相 Navier-Stokes 方程,而其他组中的计算基于 Cummins 和质量弹簧阻尼器模型,这两个模型都植根于线性势流理论。实验数据与 VOF 模拟结果具有很好的一致性。虽然准确性较低,但两个降阶模型的预测也被发现非常可信。关于浮标的运动,获得的结果表明,在从大约等于其静态平衡吃水的高度(约为其半径的 60%)释放后,浮标经历了近谐波阻尼振动。进行的分析表明,浮标的吃水长度对振动的频率和衰减率有很大的影响。例如,与平衡状态下半浸没的相同尺寸的球形浮标(即吃水量等于半径)相比,测试浮标的振荡周期大约短 20%,并且其振荡幅度衰减速度几乎快两倍。总体而言,本研究为浮球的运动响应提供了更多见解,可用于优化浮标设计以实现能量提取。
随着对脑震荡损伤的长期后果的关注日益增加,人们开始重视开发能够准确预测大脑对冲击负荷的机械响应的工具。虽然有限元模型 (FEM) 可以估计动态负荷下的大脑响应,但这些模型无法快速(几秒内)估计大脑的机械响应。在本研究中,我们开发了一个多体弹簧质量阻尼器模型,该模型可以估计大脑对围绕一个解剖轴或同时在三个正交轴上施加的旋转加速度的区域运动。总的来说,我们估计了 50% 人类大脑内 120 个位置的变形。我们发现多体模型 (MBM) 与计算的有限元响应相关,但不能精确预测(平均相对误差:18.4 6 13.1%)。我们使用机器学习 (ML) 将 MBM 的预测与负载运动学(峰值旋转加速度、峰值旋转速度)相结合,并显著减少 MBM 和 FEM 之间的差异(平均相对误差:9.8 6 7.7 %)。使用独立的运动损伤测试集,我们发现混合 ML 模型也与 FEM 的预测有很好的相关性(平均相对误差:16.4 6 10.2 %)。最后,我们使用这种混合 MBM-ML 方法来预测出现在大脑不同位置的应变,对于复杂的多轴加速度负载,平均相对误差估计范围为 8.6 % 到 25.2 %。总之,这些结果展示出一种快速且相当准确的方法,用于预测大脑对单平面和多平面输入的机械响应,并提供一种新工具来快速评估整个大脑撞击负载的后果。 [DOI: 10.1115/1.4046866]
创造合适的室内气候对于工人的生产力和个人幸福感至关重要。这也是建筑物所有者的一大开支领域。而且,随着燃料成本的上升,找到减少能源消耗的方法比以往任何时候都更加重要。这一观点进一步推动了这一观点,即由于控制系统的不适应性,大多数建筑物目前运行效率低下。不仅是居住者,而且建筑物本身也有不断变化的需求,单一的设定点是不够的。本论文提出了一种以个人为中心的新型空调控制系统,通过创造个性化环境来弥补这些低效问题。到目前为止,对热偏好的测量仅限于一组复杂的传感器,试图确定预测平均投票 (PMV) 值,或直接轮询用户。前者对于实际应用来说过于繁琐和昂贵,而后者给用户带来了过度的负担。为了克服这些限制,开发了一种超低功耗、重量轻的无线传感器,它可以直接在用户身上测量温度、湿度、活动和光照水平。这些数据用于立即推断用户的舒适度,并控制暖通空调系统,以尽量减少成本和热不适。实验结果来自一栋连续使用的建筑,该建筑使用具有多种传感和驱动模式的无线网络进行了修改。四周内,四间办公室和一个公共空间中的十名建筑居住者通过腕戴式传感器进行热调节,这些传感器控制局部空调阻尼器和窗户操作器电机。与之前四周的标准空调控制相比,舒适度有所提高,同时能耗也有所降低。解决了控制适应、舒适度确定和用户冲突解决等难题。最后,讨论了这种控制形式的局限性,以及这种主动架构的可能好处和要求。
磁流变 (MR) 阻尼器”,振动工程与技术杂志 (IF 0.35),第 9 卷,第 161-176 页,2021 年,https://doi.org/10.1007/s42417-020-00218-1。30. Vishwas Mahesh、Sharnappa Joladarashi 和 Satyabodh M Kulkarni。(2021 年)。“天然纤维增强弹性体基生物复合材料在牺牲结构应用中的损伤力学和能量吸收能力”,国防技术,17 (1),161-176,DOI:https://doi.org/10.1016/j.dt.2020.02.013(SCIE 索引,IF:2.637)。 31. C. Durga Prasad、Sharnappa Joladarashi、MR Ramesh、MS Srinath 和 BH Channabasappa。 “沉积在钛基体、硅上的 HVOF 涂层和微波处理的 CoMoCrSi-WC + CrC + Ni 和 CoMoCrSi-WC + 12Co 复合涂层的微观结构和滑动磨损性能比较 (2020)。https://doi.org/10.1007/s12633-020-00398-1。32. Vishwas Mahesh、Sharnappa Joladarashi 和 Satyabodh M Kulkarni。(2019)“黄麻/橡胶基柔性‘绿色’复合材料的附着力、柔韧性、层间剪切强度和损伤机理的实验研究”,热塑性复合材料杂志,DOI:10.1177/0892705719882074(SCIE 索引,IF:1.59 和 Scopus 索引)。 https://doi.org/10.1177/0892705719882074 33. Srikumar Biradar、Sharnappa Joladarashi 和 SM Kulkarni。(2020),“纤维缠绕玻璃/环氧复合材料吸水后的机械行为研究以及使用田口方法的摩擦学研究”,爱思唯尔材料今日论文集。 https://doi.org/10.1016/j.matpr.2020.02.834 34. Srikumar Biradar、Sharnappa Joladarashi 和 SM Kulkarni。(2019)“纤维缠绕玻璃/环氧复合材料的摩擦机械和物理特性”。材料研究快报(IF 1.44),(2019),DOI:10.1088 / 2053-1591 / ab3685。