创造合适的室内气候对于工人的生产力和个人幸福感至关重要。这也是建筑物所有者的一大开支领域。而且,随着燃料成本的上升,找到减少能源消耗的方法比以往任何时候都更加重要。这一观点进一步推动了这一观点,即由于控制系统的不适应性,大多数建筑物目前运行效率低下。不仅是居住者,而且建筑物本身也有不断变化的需求,单一的设定点是不够的。本论文提出了一种以个人为中心的新型空调控制系统,通过创造个性化环境来弥补这些低效问题。到目前为止,对热偏好的测量仅限于一组复杂的传感器,试图确定预测平均投票 (PMV) 值,或直接轮询用户。前者对于实际应用来说过于繁琐和昂贵,而后者给用户带来了过度的负担。为了克服这些限制,开发了一种超低功耗、重量轻的无线传感器,它可以直接在用户身上测量温度、湿度、活动和光照水平。这些数据用于立即推断用户的舒适度,并控制暖通空调系统,以尽量减少成本和热不适。实验结果来自一栋连续使用的建筑,该建筑使用具有多种传感和驱动模式的无线网络进行了修改。四周内,四间办公室和一个公共空间中的十名建筑居住者通过腕戴式传感器进行热调节,这些传感器控制局部空调阻尼器和窗户操作器电机。与之前四周的标准空调控制相比,舒适度有所提高,同时能耗也有所降低。解决了控制适应、舒适度确定和用户冲突解决等难题。最后,讨论了这种控制形式的局限性,以及这种主动架构的可能好处和要求。
创造合适的室内气候对于工人的生产力和个人幸福感至关重要。这也是建筑物所有者的一大开支领域。而且,随着燃料成本的上升,找到减少能源消耗的方法比以往任何时候都更加重要。这一观点进一步推动了这一观点,即由于控制系统的不适应性,大多数建筑物目前运行效率低下。不仅是居住者,而且建筑物本身也有不断变化的需求,单一的设定点是不够的。本论文提出了一种以个人为中心的新型空调控制系统,通过创造个性化环境来弥补这些低效问题。到目前为止,对热偏好的测量仅限于一组复杂的传感器,试图确定预测平均投票 (PMV) 值,或直接轮询用户。前者对于实际应用来说过于繁琐和昂贵,而后者给用户带来了过度的负担。为了克服这些限制,开发了一种超低功耗、重量轻的无线传感器,它可以直接在用户身上测量温度、湿度、活动和光照水平。这些数据用于立即推断用户的舒适度,并控制暖通空调系统,以尽量减少成本和热不适。实验结果来自一栋连续使用的建筑,该建筑使用具有多种传感和驱动模式的无线网络进行了修改。四周内,四间办公室和一个公共空间中的十名建筑居住者通过腕戴式传感器进行热调节,这些传感器控制局部空调阻尼器和窗户操作器电机。与之前四周的标准空调控制相比,舒适度有所提高,同时能耗也有所降低。解决了控制适应、舒适度确定和用户冲突解决等难题。最后,讨论了这种控制形式的局限性,以及这种主动架构的可能好处和要求。
创造合适的室内气候对于工人的生产力和个人幸福感至关重要。这也是建筑物所有者的一大开支领域。而且,随着燃料成本的上升,找到减少能源消耗的方法比以往任何时候都更加重要。这一观点进一步推动了这一观点,即由于控制系统的不适应性,大多数建筑物目前运行效率低下。不仅是居住者,而且建筑物本身也有不断变化的需求,单一的设定点是不够的。本论文提出了一种以个人为中心的新型空调控制系统,通过创造个性化环境来弥补这些低效问题。到目前为止,对热偏好的测量仅限于一组复杂的传感器,试图确定预测平均投票 (PMV) 值,或直接轮询用户。前者对于实际应用来说过于繁琐和昂贵,而后者给用户带来了过度的负担。为了克服这些限制,开发了一种超低功耗、重量轻的无线传感器,它可以直接在用户身上测量温度、湿度、活动和光照水平。这些数据用于立即推断用户的舒适度,并控制暖通空调系统,以尽量减少成本和热不适。实验结果来自一栋连续使用的建筑,该建筑使用具有多种传感和驱动模式的无线网络进行了修改。四周内,四间办公室和一个公共空间中的十名建筑居住者通过腕戴式传感器进行热调节,这些传感器控制局部空调阻尼器和窗户操作器电机。与之前四周的标准空调控制相比,舒适度有所提高,同时能耗也有所降低。解决了控制适应、舒适度确定和用户冲突解决等难题。最后,讨论了这种控制形式的局限性,以及这种主动架构的可能好处和要求。
ASFV Abbreviated Sound Field Verification BOEM Bureau of Ocean Energy Management CFR Code of Federal Regulations CMMP Construction Mitigation & Monitoring Plan COP Coastal Virginia Offshore Wind Project Construction and Operations Plan CR Dominion Energy Client Representative CTV Crew transfer vessel CVOW-C The Dominion Coastal Virginia Offshore Wind Commercial Project CZ Clearance Zone dB decibel DBBC Double big bubble curtain DEME DEME Offshore US LLC., part of the DEME Group DMA Dynamic Management Area Dominion Energy Virginia Electric and Power Company, doing business as Dominion Energy Virginia DVO Dedicated Visual Observer ECC Dominion Energy Environmental Compliance Coordinator ECM Environmental Compliance Monitor ESA Endangered Species Act FOU A Monopile foundation FR Federal Register ft feet GARFO NMFS Greater Atlantic Regional Fisheries Office HFC High Frequency Cetaceans HSD Hydro声音阻尼器HZ Hertz Hz Hz骚扰区IR IR IS ITA附带授权IV安装船KM/H公里/小时/小时KHz KHz KHz KHz KILOHEHTZ租赁区租赁号OCS-A 0483 LFC低频固定体LOA授权字母LPSO铅受保护物种观察者M米MCC MCC监测和协调中心MCPG运动补偿桩抓毛机MF MF MF MF中期MFC MFC中频率中期频率
是由驱动程序或在微控制器中体现的自适应控制算法选择的。Metered和Elsawaf [1]实现了粒子群优化(PSO)算法,以调整在半活性四分之一CAR模型悬架系统上实现的PID控制器。在MATLAB/SIMULINK环境中模拟了带有MR阻尼器的2DOF车辆模型。将PSO调谐的PID控制器与使用Ziegler-Nicholas方法调整的常规PID控制器,被动悬架系统和不受控制的MR DAMBER进行了比较。颠簸和随机道路输入用于时间和频域测试系统。据观察,POS调谐的PID控制器可提高骑行舒适性和车辆稳定性。Kesarkar和Selvaganesan [2]使用具有目标函数的人工Bee集群算法设计了分数PID控制器,例如积分绝对误差,积分正方形误差和积分时间绝对误差,可用于多模态复杂优化问题。作者观察到与常规PID方法相比,结果是有希望的。nui [3]已经实施了基于GA的优化方法来调整主动悬架系统的PID参数。绝对误差控制用作调整PID参数的目标函数。GA的优化PID控制器可改善主动悬架系统的动态性能并提高稳定性。Hamid和Hamid [4]分析了一个基于模糊的PID控制器,用于半赛车主动悬架系统。在此分析中,悬架工作空间是观察到的标准。使用模糊逻辑,模糊pid和∞dahRe实现并研究了主动控制系统。与其他控制策略相比,PID控制器的过冲,卑鄙的误差以及改善的舒适性和安全性。Tammam,Aboelela,Moustafa和Seif [5]实施了基于多目标GA的PID控制器,以控制单个区域功率系统的负载频率。可以观察到基于GA的PID控制器易于实现,并有效地改善系统性能。
是 6 叶 Dowty Rotol 后掠形螺旋桨。单个控制杆控制每个螺旋桨/发动机组合。辅助动力装置 (APU) 将被安装在尾部。飞机可容纳两名飞行员、一名观察员、两名乘务员、行李架、卫生间,并设有厨房。有一个前后储物舱和一个后货舱。飞机的最大飞行高度为 31,000 英尺。Saab 2000 具有全液压驱动的电子控制方向舵,并将具有全液压驱动的电子控制升降舵作为后续设计修改。动力升降舵控制系统 (PECS) 提供左右升降舵表面的控制和动力驱动。PECS 还提供飞机稳定性增强和配平功能。拟议的升降舵系统在许多方面与方向舵设计相似,由模拟和数字电路混合组成,没有机械备份。控制柱连接到线性可变差动传感器 (LVDT)、操纵杆阻尼器、自动驾驶伺服器、带断开装置的线性弹簧,并与电子断开装置互连。连接到控制柱的位置传感器 (LVDT) 向两个电动升降舵控制单元 (PECU) 提供信号。每个 PECU 通过两个独立的伺服执行器通道 (SAC) 控制两个升降舵伺服执行器 (ESA)。每个 SAC 细分为一个主控制通道和一个监控通道。由一个 PECU 控制的四个 ESA 中的两个定位一个升降舵侧。ESA 有两种操作模式:主动和阻尼。当 PECU 的模式控制电流和液压可用时,将产生主动模式。一个主动伺服执行器足以操作升降舵表面。升降舵伺服执行器阀门和执行器柱塞位置反馈由位置传感器 (LVDT) 提供。PECU 通过配平继电器和两台数字空气数据计算机连接到一台飞行控制计算机。飞行控制计算机还向自动驾驶伺服器提供信号。操纵杆到升降舵传动装置是指示空速 (IAS) 的功能。配平和稳定性增强基于 IAS、垂直加速度和襟翼位置。操纵杆、配平和升降舵位置和状态信息被馈送到发动机
是 6 叶 Dowty Rotol 后掠形螺旋桨。单个控制杆控制每个螺旋桨/发动机组合。尾部将安装辅助动力装置 (APU)。该飞机可容纳两名飞行员、一名观察员、两名乘务员、行李架、卫生间,并可安装厨房。有一个前后储物舱和一个后货舱。飞机的最大运行高度为 31,000 英尺。萨博 2000 具有全液压电子控制方向舵,并将具有全液压电子控制升降舵作为后续设计修改。动力升降舵控制系统 (PECS) 提供左右升降舵表面的控制和动力驱动。PECS 还提供飞机稳定性增强和配平功能。拟议的升降舵系统在许多方面与方向舵设计相似,由模拟和数字电路混合组成,没有机械备份。控制柱与线性可变差动传感器 (LVDT)、操纵杆阻尼器、自动驾驶伺服器、带断开装置的线性弹簧相连,并与电子断开装置互连。与控制柱相连的位置传感器 (LVDT) 向两个电动升降控制装置 (PECU) 提供信号。每个 PECU 通过两个独立的伺服执行器通道 (SAC) 控制两个升降舵伺服执行器 (ESA)。每个 SAC 细分为一个主控制通道和一个监控通道。四个 ESA 中的两个由一个 PECU 控制,用于定位一个升降舵侧。ESA 有两种操作模式,主动和阻尼。当 PECU 的模式控制电流和液压可用时,将产生主动模式。一个主动伺服执行器足以操作升降舵表面。升降舵伺服执行器阀门和执行器柱塞位置反馈由位置传感器 (LVDT) 提供。PECU 通过配平继电器和两个数字空气数据计算机连接到一台飞行控制计算机。飞行控制计算机还向自动驾驶伺服器提供信号。操纵杆到升降舵的传动装置是指示空速 (IAS) 的功能。配平和稳定性增强基于 IAS、垂直加速度和襟翼位置。操纵杆、配平和升降舵的位置和状态信息被传送到发动机
机器人和人工智能(AI)的融合正在彻底改变音乐和娱乐领域。机器人正在从执行以服务为导向的任务到具有潜在的情感参与的先进人类机器人互动(HRI)。对机器人表现力的追求在音乐和娱乐机器人的建模,设计和控制中提出了新的挑战和机遇。当前的研究主要是针对能够操纵各种乐器的机器人的设计和物理实施(Wang等,2022; Lim等,2012),而实时HRI的社会智能机器人的开发仍未被倍增。随着AI的进步,机器人现在可以组成和即兴创作,并在HRI期间解释和应对人类情感状态(McColl等,2016; Wang等,2024)。该研究主题始于介绍AI驱动的音乐和娱乐机器人的最新发展。由于电话的结果,本研究主题已接受和收集了六篇论文。这些文章对各种艺术形式进行了全面的探索,包括在钢琴,小提琴,吉他,鼓和马里姆巴等乐器上唱歌,舞蹈和音乐表演。图1显示了这些研究中研究的音乐机器人的概述。在贡献的作品中,两篇文章着重于灵巧的操纵和感觉运动协调。Gilday等。引入了一个通用系统,该系统具有一个能够弹钢琴和表演吉他弹奏的参数手。与现有的定制机器人音乐系统不同,该提议的手被设计为单件3D打印结构,通过调制机械性能和驱动模式,证明了在娱乐应用中增强表现力的潜力。这项研究强调,利用系统 - 环境相互作用可以实现具有简化控制的多种多样的,多功能的功能和可变播放样式。而不是乐器弹奏,而是Twomey等。使用手臂上的可穿戴软传感器研究了舞蹈性能,以探索这种设备是否可以增强艺术表达。舞蹈运动是在虚拟质量弹簧阻尼器系统中以山液的形式建模的,并在本地框架中分析了肢体,以避免通常与IMUS相关的漂移问题。作者提出了一种并行算法来检测
用于实验室引擎盖排气管的火包装包裹,所有实验室罩管道排气管被认为是危险的,这是由于由代码定义的化学物质的健康类别。用代码安装了火灾阻尼器,但由于排气的危险性质而被禁止,允许使用燃料包裹。 请参阅U-M规格第220719节的机械系统绝缘材料,以了解消防包装产品的要求。 安装要求将根据通过建筑物的排气管路由而有所不同。 记录的工程师应与UM环境健康与安全协调,以逐项项目审查拟议的安装。 应保护暴露的火包裹绝缘材料免受物理损害,以确保保持绝缘的完整性。 可能需要进行隔热材料的其他外套或其他保护手段才能在管道运行的斑点区域中完成此操作,但整个系统可能不需要。 一个示例申请包括但不限于通过看门人的壁橱垂直路由的火管,环境服务可能会损坏使用MOP,桶,购物车等损坏绝缘的隔热材料。 此外,在其他非实验室危险排气应用中可能会考虑或需要使用火包,但是在发布竞标文件之前,需要对U-M设计团队以及U-M环境健康与安全进行审查。 排气风扇允许使用燃料包裹。请参阅U-M规格第220719节的机械系统绝缘材料,以了解消防包装产品的要求。安装要求将根据通过建筑物的排气管路由而有所不同。记录的工程师应与UM环境健康与安全协调,以逐项项目审查拟议的安装。应保护暴露的火包裹绝缘材料免受物理损害,以确保保持绝缘的完整性。可能需要进行隔热材料的其他外套或其他保护手段才能在管道运行的斑点区域中完成此操作,但整个系统可能不需要。一个示例申请包括但不限于通过看门人的壁橱垂直路由的火管,环境服务可能会损坏使用MOP,桶,购物车等损坏绝缘的隔热材料。此外,在其他非实验室危险排气应用中可能会考虑或需要使用火包,但是在发布竞标文件之前,需要对U-M设计团队以及U-M环境健康与安全进行审查。排气风扇
290000 液压 + 泄漏 291100 绿色 + EMP 291100 绿色 + 发动机 1 291100 绿色 + 液压 + 系统 291100 绿色 + 压力 291100 发动机 1 + 液压 291114 绿色 + 歧管 291114 1011GM 291114 1111GM 291115 绿色 + PTU + 歧管 291115 1013GM 291115 1113GM 291117 绿色 + 压力 + 开关 291117 开关 + 泵 291117 1074GK 291117 1074GK 291121 绿色 + 空气 + 蓄能器 291121 1072GM 291122 绿色 + 蓄能器 + 充电 + 阀门 291122 1071GM 291132 绿色 + 压力 + 泄压 + 阀门 291132 1063GM 291133 绿色 + 优先 + 阀门 291133 1064GM 291134 绿色 + 取样 + 阀门 291134 1187GM 291135 绿色 + 止回阀 + 阀门 + 换向器 291135 3008KM1 291135 3008KM1 291135 3009KM1 291135 3010KM1 291136 绿色 + 止回阀 + 泵 + 输送 291136 1050GM 291136 1060GM 291137 绿色 + 箱体 + 排水管 291137 1041GM 291138 绿色 + 联轴器 + 蓄能器 291138 1672GM 291139 绿色 + 半联轴器 291139 1038GM 291139 1700GM 291139 1700GM 291141 绿色 + 低 + 空气 + 压力 291141 绿色 + 储液器 291141 1000GQ 291142 绿色 +蓄能器 291142 1070GM 291143 EDP + 滤清器 + 发动机 1 291143 EDP + 滤清器 + 左 291143 EDP + 滤清器 + 绿色 291143 1084GM 291143 1086GM 291144 绿色 + 滤清器 + 低 + 压力 291144 1002GM 291144 1030GM 291145 绿色 + 滤清器 + 高 + 压力 291145 1048GM 291146 绿色 + 减震器 291146 1085GM 291147 绿色 + 滑动 + 补偿器 291147 1010GM 291148 绿色 + 止回阀 + 阀门 + WTB 291148 1170GM 291148 1410GM 291148 1411GM 291149 绿色 + 液压 + 发动机 + 管子 291149 液压 + 发动机 1 + 管子 291151 EDP + 发动机 1 291151 EDP + 左 291151 发动机 1 + 泵 291151 绿色 + EDP 291151 绿色 + 泵 291151 1030GK 291152 绿色 + 发动机 + 消防 + 阀门 291152 1046GK 291153 绿色 + 阻尼器 + EDP 291153 1600GM 291163 绿色 + 接地 + 歧管 291200 蓝色 + 液压 + 系统 291200 蓝色 + 压力 291214 蓝色 + 歧管 291214 2011GM 291215 蓝色 + 电气 + 泵 291215 2706GJ 291217 蓝色 + 压力开关