使用替代机制来耗散或散射,双态结构和机械超材料已经显示出有望通过将能量锁定到紧张的材料中来减轻影响的有害影响。在本文中,我们扩展了通过双层超材料吸收吸收的先前工作,以探索动能传递对撞击器速度和质量的依赖性,而应变速率超过10 2 s -1。我们观察到对两个影响器参数的依赖性很大,范围从比比较线性材料的显着性能到更差的性能。然后,我们将性能的可变性与系统中的孤立波的形成相关联,并在动态载荷下对理想化的能量吸收能力进行分析估计。此外,我们发现对阻尼的依赖性显着,并在系统内部的单个波传播中存在定性差异。这项研究中揭示的复杂动力学是为将双材料超材料应用于包括人类和工程系统冲击和影响保护设备在内的应用的潜在未来指南。
磁绝缘子是通过利用镁电流来传播自旋信息的理想平台。但是,到目前为止,大多数研究都集中在Y 3 Fe 5 O 12(YIG)和其他一些铁磁性绝缘子上,而不是纯铁磁体。在这项研究中,我们证明了镁电流可以在EUS的薄膜中传播磁极。通过使用PT电极进行EUS的18 nm厚胶片中的局部和非局部转运测量,我们检测到由Spin Seebeck效应引起的热产生产生的镁电流。通过比较局部和非局部信号与温度(<30 K)和磁场(<9 t)的依赖性,我们确认了非局部信号的镁传输来源。最后,我们在EUSFIM(〜140 nm)中提取了镁扩散长度,这是与在同一纤维中测得的大吉尔伯特阻尼的良好对应关系。
汽车的悬架系统在确保安全性和稳定性的同时提供平稳舒适的行驶方面起着至关重要的作用。传统悬架系统通常依靠机械弹簧来吸收路线的冲击和振动。但是,对利用替代技术(例如斜齿轮)进行悬浮和阻尼的弹簧悬架系统的兴趣越来越大。本文介绍了在弹簧悬架系统中使用斜角齿轮的探索。讨论了使用斜角齿轮代替传统弹簧的优势和挑战。斜角齿轮提供了紧凑而轻巧的解决方案,对悬架特征的精确控制以及对复杂性和维护要求的潜在降低。但是,需要解决诸如设计复杂性,耐用性和可靠性问题以及成本增加之类的挑战。审查了斜角齿轮的原理及其在悬架系统中的应用,并强调了该领域的现行研究和开发状态。讨论了提出的进一步研究的方法和方法,强调了这种概念在推进汽车悬架系统领域的意义。
惯性传感器在导航系统中至关重要,但通常依赖于 GPS 网络。利用量子效应的新型惯性传感器有望在没有 GPS 的环境中(例如太空或水下)提供更好的运动绝对测量。在这项工作中,我们展示了如何使用环形玻色-爱因斯坦凝聚态 (BEC) 作为旋转传感器,方法是印记相 [1] 以产生低能声子驻波激发,然后观察激发的节点和波腹响应旋转的进动。我们观察到印记激发的高品质因数高达 Q = 27,当与相对较大的 100 μm 环直径相结合时,可实现比以前证明的更高的灵敏度 [2,3]。持续电流被印记到环中,模拟慢速旋转速度并展示该方案的测量效用。将实验结果与使用有限温度随机投影 Gross Pitaevskii 方程 (SPGPE) 的模拟结果进行了比较,揭示了主要的阻尼机制,并进一步展示了可以最小化阻尼的参数空间。
摘要:本文提出一种机电暂态法,建立适用于大规模电网的基于电池储能系统的虚拟同步发电机模型。该模型由虚拟同步发电机控制、系统限制和模型接口组成。还考虑了二阶同步机的方程、充电/放电功率特性、荷电状态、运行效率、死区和逆变器限制。通过将储能变换器配备为具有励磁系统和调速系统的近似同步电压源,为具有低惯性和弱阻尼的可再生能源电力系统提供必要的惯性和阻尼特性。基于电力系统分析软件包(PSASP)的节点电流注入法,建立了控制模型,研究了不同储能系统的影响。选择可再生能源单元波动对 IEEE 4 机 2 区域系统频率和有功功率的影响进行仿真验证。通过对储能系统的合理控制和灵活配置,为高渗透率可再生能源电力系统创造稳定、友好的频率环境。
本研究对人类机器人互动中自主对话在行为改变教练中的设计和影响进行了实证研究。我们专注于桌面社交机器人Haru的使用,并探讨了微小习惯方法[13]的实施,以促进积极的行为改变。我们研究的核心在于开发一个完全自主的对话系统,该系统最大程度地提高了Haru的情感表现力和独特的个性。我们的方法论涉及对话系统的迭代设计和广泛的测试,以确保其有效体现了小习惯方法的原理,同时还纳入了信任和信任阻尼的策略。在与人类参与者的实验研究中评估了对话的最终版本的有效性(n = 12)。结果表明,对Haru活泼,互动性和中立性的看法有显着改善。此外,我们的研究为社会机器人技术中对话设计的更广泛的理解做出了贡献,为该领域的未来发展提供了实用的见解。
图1:(a)横向设备结构的示意图,(b)悬挂式sin鼓的SEM图像,上面覆盖了25 nm al薄纤维。为了最大程度地减少金属对阻尼的贡献,在大多数夹紧区域中都不存在。16该薄片通过两个矩形Al电极与外部电极连接。(c)最终设备结构的SEM图像,其中Al/sin电容偶联具有悬浮的顶门,以及(d)测量设置的示意图,其中PCB部分上的微波腔以焦糖颜色标记。微波炉通过连接到其悬浮的顶门的粘合线与sin鼓(紫色)耦合。用Al薄片覆盖的Sin鼓通过粘结线连接到两个微带传输线。一个用于驱动机械谐振器,另一个用于通过微波反射方案17检测机械运动。更多详细信息显示在支持信息(SI:纳米化,微波炉重新射击的设置和建模)中。
皮质振荡,以通过神经夹带的机制在语音和音乐感知,注意力选择和工作记忆中发挥功能作用。通常认为神经夹带的特性之一是,其对持续振荡的调节作用超过了节奏刺激。我们通过在被动感知范式中研究旋律刺激期间和表达旋律刺激期间和之后通过研究皮质神经振荡来测试了这种现象的存在。旋律由; 60 and; 80 Hz音调嵌入2.5 Hz流中。使用雄性和女性人类中的颅内和表面记录,我们揭示了高c条带的持续振荡活性,以响应整个皮质的音调,远远超出了听力区域。响应2.5 Hz流,在任何频带中均未观察到持续活动。我们进一步表明,我们的数据被阻尼的谐波振荡器模型很好地捕获,可以分为三类的神经动力学,具有独特的阻尼特性和特征性。该模型对人皮层中听觉神经夹带的频率选择性提供了一种机械和定量的解释。
2 /𝑎1,带有𝑎1= 2.5×2 = 0.8 𝜆 𝜆。所有波导壁都被视为PEC边界,而𝜆 𝜆是NZI频率下的自由空间波长。(b) - (d)时间平均poynting载体场(𝐒𝐒,功率流)的实际部分的幅度和矢量图,将其标准化为其入射对应物,对于(b)𝛿 = 0(b)𝛿 = 0(无损耗),(c)𝛿 = 0.01,和(d)𝛿 = 0.1。这些数值结果表明,功率流的幅度在有损耗的EMNZ介质中表现出指数衰减。然而,归一化的矢量分布在耗散阻尼的情况下具有鲁棒性,并且在此处研究的参数范围内保留了涡度的不存在。所考虑的损失因素是NZI介质的超材料实现的现实性,包括色散波导和全dielectric光子晶体,以及一些最高质量的连续培养基,例如硅碳化硅(SIC),其特征在于𝜀 =𝑖=𝑖0.03。但是,基于掺杂的半导体的其他实现(例如基于掺杂的半导体)表现出更高的损失𝜀 = 𝑖0.2〜0.5。
在人为变暖下,未来对气候变异性的未来变化超出了14个特定模式,例如El ni〜no-Southern振荡(ENSO)尚未得到充分的特征。在社区地球系统模型版本2 16大型合奏(CESM2-LE)气候模型中,未来对海面17温度(SST)变化的变化(以及相应的海洋热浪INTEN-18 SITE)在空间上是异质的。我们使用局部线性随机性-20确定性模型检查了北极前期的这些投影变化(在1960-2000和2060-2100之间),这使我们能够量化三个21个驱动因素对SST变异性的变化的影响:SEST变异:海洋“内存”(SECS“内存”(SST DAMPING DAMPING TIMESCALE),ENSO 22 TELECECONECTIOS和STOCHSTICTION和STOCHSTICTION和STOCHSTICTION和STOCHSICTION和STOCHSICTION和STOCHSICTION和STOCHSICTION和STOCHSICTION和Stoch。海洋记忆在大多数23个地区下降,但在北部太平洋中部延长。这种变化主要是由于空气反馈和海洋阻尼的24个变化,而混合层浅25层的深度起着次要作用。ENSO远程连接26模式的向东移动主要负责SST方差变化的模式。27