所用的 N、Ru 和 Cu 原子分别为 6s 2 5d 3、2s 2 2p 3、4d 7 5s 1 和 3d 10 4s 1。
完整作者列表:Li, Ning;加州大学圣地亚哥分校 Lim, Jasmine;南密西西比大学,聚合物科学与工程学院 Azoulay, Jason;南密西西比大学,聚合物与高性能材料学院 Ng, Tse Nga;加州大学圣地亚哥分校
摘要:系统研究了 Ru 沉积温度和后退火条件对用于先进 Cu 互连线应用的原子层沉积 (ALD) Ru 扩散阻挡层与 Cu 薄膜界面粘附能的影响。在 225、270 和 310 o C 沉积温度下沉积的样品的初始界面粘附能分别为 8.55、9.37、8.96 J/m 2 ,这与 ALD Ru 沉积温度下 Ru 薄膜的相似微结构和电阻率密切相关。在 200 o C 后退火期间,界面粘附能一直稳定在 7.59 J/m 2 以上的高值,直至 250 h,而在 500 h 后急剧下降到 1.40 J/m 2 。 X射线光电子能谱Cu 2p峰分离分析表明,界面粘附能与界面CuO形成之间存在良好的相关性。因此,ALD Ru似乎是一种有前途的扩散阻挡层候选材料,具有先进的Cu互连的可靠界面可靠性。
或CsCl 40已用于处理CsPbI 3 层以原位生长二维钙钛矿层作为电子阻挡层。 但单个电子阻挡层的性能提升仍然有限,需要新的策略。 在此,CsPbCl 3 QDs和二维Cs 2 PbI 2 Cl 2都沉积在CsPbI 3 钙钛矿层上以形成复合电子阻挡层。 首先,使用CsPbCl 3 QDs环己烷溶液将CsPbCl 3 QDs旋涂在CsPbI 3 钙钛矿层上。 然后,将CsCl乙醇溶液也旋涂在涂有QDs的CsPbI 3 钙钛矿层上以形成二维Cs 2 PbI 2 Cl 2。 这种结构形成了有利于电子阻挡的能级排列。此外晶体缺陷也得到有效钝化,CsPbI 3 C-PSCs的PCE由12.51%提升至16.10%。
图 1。SiO X 作为辐射屏障。NIP 设备中的质子散乱(a)没有,(b)有 1 μm 厚的 SiO X 质子屏障。红线表示由于质子相互作用而在设备堆栈中形成的总空位与深度的关系。每个案例都给出了设备示意图,设备架构的详细信息请参阅方法部分。代表性 NIP 设备的横截面 SEM 图像,不带(c)和带(d)SiO X 层。(e)NIP 和(g)PIN 设备在用 0.05 MeV 质子辐照之前和之后的平均 PCE,质子辐照的通量分别为 10 13 cm -2 和 10 15 cm -2 ,没有(裸露的)和有(受保护的)SiO X 质子屏障。每个类别对 4-5 个设备进行平均值计算。相应的 JV 曲线显示在(f)和(h)中。
近年来,氮化镓 (GaN) 基高电子迁移率晶体管 (HEMT) 因其在降低开关损耗、维持高击穿电压以及保持高温稳定性方面所表现出的卓越性能,其商业化进程不断加快 [1,2]。大尺寸 Si 衬底上 GaN 外延生长技术的进步降低了生产成本。同时,Si 上的 HEMT 器件可以轻松集成到现有的 Si 铸造厂中 [4-6]。上述优势使 GaN 基 HEMT 器件更接近大众市场应用。阻挡层是 HEMT 器件中的关键元件之一,它决定了导电通道的电阻。AlGaN 是最常用的阻挡材料。在 AlGaN / GaN 界面区域形成的二维电子气 (2DEG) 表现出良好的稳定性、低的薄层电阻、高的载流子密度和高的电子迁移率 [7,8]。由于在 AlN / GaN 界面区域形成了更高的 2DEG 密度,AlN 作为阻挡层材料也引起了人们的关注 [9]。据报道,薄层电阻 (Rs) 值低至 128 Ω/sq,2DEG 密度为 3.21 × 10 13 / cm 2 [10]。此外,在 AlN 系统中可以避免合金散射,从而提高 2DEG 霍尔迁移率 [11,12]。已经证明了基于 AlN 阻挡层的 HEMT 器件具有低栅极漏电和高 I on / I off 比 [13]。表 1 总结了最近对具有最佳 Rs 性能的 AlN / GaN 异质结构的研究。然而,由于 AlN 与 GaN 沟道层的晶格失配较大 (2.5%),因此 AlN 的弛豫是一个主要挑战。氮化硅 (SiN x ) 帽层已被用作表面钝化层,以避免/减少 AlN 弛豫 [ 14 ] 。然而,钝化帽层的成分和厚度对抑制弛豫的影响很少被研究。在本文中,我们报告了包含原位生长的 GaN 和/或 SiN x 帽层的 AlN/GaN 异质结构的长期 2DEG 稳定性。
高效有机发光二极管 (OLED) 通常由多层堆栈组成,包括电荷传输层、电荷和激子阻挡层,以将电荷复合限制在发射层内。本文展示了一种基于热激活延迟荧光的高度简化的单层蓝光 OLED,其发射层简单地夹在由聚合物导电阳极和金属阴极组成的欧姆接触之间。单层 OLED 的外部量子效率为 27.7%,高亮度下滚降很小。内部量子效率接近 1,表明高度简化的无限制层单层 OLED 可以实现最先进的性能,同时大大降低设计、制造和设备分析的复杂性。
电火花沉积 (ESD) 技术已用于在 9Cr 还原活化钢上涂覆铁铝化物涂层,该钢是用于聚变反应堆测试包层模块的结构材料。在 X 射线衍射技术、光学显微镜、扫描电子显微镜和纳米压痕硬度测量的支持下,对铝化物涂层以及界面区域进行了相位识别和微观结构分析。微观结构检查表明,通过 ESD 工艺处理的钢的近界面微观结构发生了显著变化。涂层/基材界面的基材侧由可能具有准非晶性质的软区和该界面下方的 M 23 C 6 型碳化物偏析富集区组成。然而,涂层显示出广泛的裂纹缺陷,需要将其去除才能可靠地评估其作为包层应用的阻挡层的适用性。
与其他过渡金属氧化物相比,RuO 2 具有独特且有前途的性能。RuO 2 因其卓越的异相催化 [1] 和电催化 [2] 能力而闻名。它是一种导电性极强的氧化物(≈ 35 µΩ cm),电阻率与钌金属相当。这种材料的化学和热稳定性增加了它的吸引力。此外,钌的稀缺性和高成本要求我们了解 RuO 2 的微观特性。[3] RuO 2 薄膜具有低电阻率、优异的扩散阻挡性能、高温稳定性和耐化学腐蚀性,在大规模集成电路中有着广泛的应用。[4,5] 除了 Ru 之外,RuO 2 还可用作铜沉积的种子层。 [6,7] 它具有比 Pt 更好的蚀刻能力,这意味着 RuO2 可以借助 O2/CF4 放电中的反应离子蚀刻 (RIO) 轻松图案化。[8] 最近还有研究表明,RuO2 可以作为下一代 Ru 基互连中 Ru 扩散的优异阻挡层。[9]
在本研究中,使用微电子和光子结构分析 (AMPS-1D) 模拟器检查并表征了异质结 (P + a-SiC/i 本征/n-Si) 太阳能电池。在这种异质结太阳能电池中,施加了本征层以提高效率和性能。使用该本征层,可以实现 36.52% (Voc = 1 714 V、Jsc = 27 006 mA/cm 2 和 FF = 0 789) 的最佳效率。还观察了没有本征层的太阳能电池。在这种情况下,观察到的最大效率为 2.378%,这非常差。还研究了具有电子阻挡层 (EBL) 和缺陷层的异质结太阳能电池。在这种情况下,模拟结果显示效率 (34.357%) 低于之前。本研究论文介绍了一种异质结太阳能电池的优化模型,该模型通过增加本征层来提高效率。所提出的设计在其理论框架中显示出巨大的潜力。展望未来,该设计可以在实验室环境中实现,并有可能扩大应用范围。